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A spatial point process is a random pattern of points in d-dimensional space
(where usually d = 2 or d = 3 in applications). Spatial point processes are
useful as statistical models in the analysis of observed patterns of points,
where the points represent the locations of some object of study (e..g. trees
in a forest, bird nests, disease cases, or petty crimes). Point processes play a
special role in stochastic geometry, as the building blocks of more complicated
random set models (such as the Boolean model), and as instructive simple
examples of random sets.

These lectures introduce basic concepts of spatial point processes, with a
view toward applications, and with a minimum of technical detail. They cover
methods for constructing, manipulating and analysing spatial point processes,
and for analysing spatial point pattern data. Each lecture ends with a set of
practical computer exercises, which the reader can carry out by downloading
a free software package.

Lecture 1 (‘Point Processes’) gives some motivation, defines point processes,
explains how to construct point processes, and gives some important exam-
ples. Lecture 2 (‘Moments’) discusses means and higher moments for point
processes, especially the intensity measure and the second moment measure,
along with derived quantities such as the K-function and the pair correlation
function. It covers the important Campbell formula for expectations. Lec-
ture 3 (‘Conditioning’) explains how to condition on the event that the point
process has a point at a specified location. This leads to the concept of the
Palm distribution, and the related Campbell-Mecke formula. A dual concept is
the conditional intensity, which provides many new results. Lecture 4 (‘Mod-
elling and Statistical Inference’) covers the formulation of statistical models
for point patterns, model-fitting methods, and statistical inference.
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1 Point Processes

In this first lecture, we motivate and define point processes, construct exam-
ples (especially the Poisson process [28]), and analyse important properties
of the Poisson process. There are different ways to mathematically construct
and characterise a point process (using finite-dimensional distributions, va-
cancy probabilities, capacity functional, or generating function). An easier
way to construct a point process is by transforming an existing point process
(by thinning, superposition, or clustering) [43]. Finally we show how to use
existing software to generate simulated realisations of many spatial point
processes using these techniques, and analyse them using vacancy probabilities
(or ‘empty space functions’).

1.1 Point Processes in 1D and 2D

A point process in one dimension (‘time’) is a useful model for the sequence
of random times when a particular event occurs. For example, the random
times when a hospital receives emergency calls may be modelled as a point
process. Each emergency call happens at an instant, or point, of time. There
will be a random number of such calls in any period of time, and they will
occur at random instants of time.

Fig. 1. A point process in time.

A spatial point process is a useful model for a random pattern of points
in d-dimensional space, where d ≥ 2. For example, if we make a map of the
locations of all the people who called the emergency service during a particular
day, this map constitutes a random pattern of points in two dimensions. There
will be a random number of such points, and their locations are also random.

Fig. 2. A point process in two dimensions.
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We may also record both the locations and the times of the emergency calls.
This may be regarded as a point process in three dimensions (space × time),
or alternatively, as a point process in two dimensions where each point (caller
location) is labelled or marked by a number (the time of the call).

Spatial point processes can be used directly, to model and analyse data
which take the form of a point pattern, such as maps of the locations of trees
or bird nests (‘statistical ecology’ [16, 29]); the positions of stars and galax-
ies (‘astrostatistics’ [1]); the locations of point-like defects in a silicon crystal
wafer (materials science [34]); the locations of neurons in brain tissue; or the
home addresses of individuals diagnosed with a rare disease (‘spatial epidemi-
ology’ [19]). Spatial point processes also serve as a basic model in random
set theory [42] and image analysis [41]. For general surveys of applications of
spatial point processes, see [16, 42, 43]. For general theory see [15].

1.2 Formulation of Point Processes

There are some differences between the theory of one-dimensional and higher-
dimensional point processes, because one-dimensional time has a natural or-
dering which is absent in higher dimensions.

A one-dimensional point process can be handled mathematically in many
different ways. We may study the arrival times T1 < T2 < . . . where Ti is
the time at which the ith point (emergency call) arrives. Using these random
variables is the most direct way to handle the point pattern, but their use is
complicated by the fact that they are strongly dependent, since Ti < Ti+1.

T1 T2 T3 T4

Fig. 3. Arrival times Ti.

Alternatively we may study the inter-arrival timesSi = Ti+1−Ti. These have
the advantage that, for some special models (Poisson and renewal processes),
the random variables S1, S2, . . . are independent.

S1 S2 S3 S4

Fig. 4. Inter-arrival times Si.

Alternatively it is common (especially in connection with martingale theory)
to formulate a point process in terms of the cumulative counting process
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Nt = number of points arriving up to time t

=
∞∑

i=1

1{Ti ≤ t},

for all t ≥ 0, where 1{. . .} denotes the indicator function, equal to 1 if the
statement “. . .” is true, and equal to 0 otherwise. This device has the advan-
tage of converting the process to a random function of continuous time t, but
has the disadvantage that the values Nt for different t are highly dependent.

t

N(t)

Fig. 5. The counting process Nt associated with a point process.

Alternatively one may use the interval counts

N(a, b] = Nb −Na

for 0 ≤ a ≤ b which count the number of points arriving in the interval (a, b].
For some special processes (Poisson and independent-increments processes)
the interval counts for disjoint intervals are stochastically independent.

a b

N(a,b] = 2

Fig. 6. Interval count N(a, b] for a point process.

In higher dimensions, there is no natural ordering of the points, so that there is
no natural analogue of the inter-arrival times Si nor of the counting process Nt.
Instead, the most useful way to handle a spatial point process is to generalise
the interval counts N(a, b] to the region counts
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N(B) = number of points falling in B

defined for each bounded closed set B ⊂ Rd.

B
N(B) = 3

Fig. 7. Counting variables N(B) for a spatial point process.

Rather surprisingly, it is often sufficient to study a point process using only
the vacancy indicators

V (B) = 1{N(B) = 0}
= 1{there are no points falling in B}.

V(B) = 1

B

Fig. 8. Vacancy indicators V (B) for a spatial point process.

The counting variables N(B) are natural for exploring additive properties of a
point process. For example, suppose we have two point processes, of ‘red’ and
‘blue’ points respectively, and we superimpose them (forming a single point
process by discarding the colours). If Nred(B) and Nblue(B) are the counting
variables for red and blue points respectively, then the counting variable for
the superimposed process is N(B) = Nred(B) + Nblue(B).

The vacancy indicators V (B) are natural for exploring geometric and ‘mul-
tiplicative’ properties of a point process. If Vred(B) and Vblue(B) are the va-
cancy indicators for two point processes, then the vacancy indicator for the
superimposed process is V (B) = Vred(B)Vblue(B).
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1.3 Example: Binomial Process

To take a very simple example, let us place a fixed number n of points at
random locations inside a bounded region W ⊂ R2. Let X1, . . . , Xn be i.i.d.
(independent and identically distributed) random points which are uniformly
distributed in W . Hence the probability density of each Xi is

f(x) =
{

1/λ2(W ) if x ∈W
0 otherwise

where λ2(W ) denotes the area of W . A realisation of this process is shown in
Figure 9.

Fig. 9. Realisation of a binomial point process with n = 100 in the unit square.

Since each random point Xi is uniformly distributed in W , we have for any
bounded set B in R2

P(Xi ∈ B) =
∫

B
f(x) dx

=
λ2(B ∩W )
λ2(W )

.

The variables N(B) and V (B) may be represented explicitly as

N(B) =
n∑

i=1

1{Xi ∈ B}

V (B) =
n

min
i=1

1{Xi (∈ B}
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It follows easily that N(B) has a binomial distribution with parameters n and
p = λ2(B ∩W )/λ2(W ), hence the process is often called the binomial process.

Note that the counting variables N(B) for different subsets B are not
independent. If B1 and B2 are disjoint, then

N(B1) + N(B2) = N(B1 ∪B2) ≤ n

so that N(B1) and N(B2) must be dependent. In fact, the joint distribution
of (N(B1), N(B2)) is the multinomial distribution on n trials with success
probabilities (p1, p2) where pi = λ2(Bi ∩W )/λ2(W ).

1.4 Foundations

Foundations of the theory of point processes in Rd are expounded in detail in
[15]. The following is a very brief and informal introduction.

Random Measure Formalism

The values of the counting variables N(B) for all subsets B give us suffi-
cient information to reconstruct completely the positions of all the points in
the process. Indeed the points of the process are those locations x such that
N({x}) > 0. Hence we may as well define a point process as a collection of
random variables N(B) indexed by subsets B.

The counting variables N(B) for different sets B satisfy certain relation-
ships, including additivity

N(A ∪B) = N(A) + N(B)

whenever A and B are disjoint sets (A ∩B = ∅) and of course

N(∅) = 0

where ∅ denotes the empty set. Furthermore, they are continuous in the sense
that, if An is a decreasing sequence of closed, bounded sets (An ⊇ An+1) with
limit

⋂
n An = A, then we must have

N(An) → N(A).

These properties must hold for each realisation of the point process, or at least,
with probability 1. They amount to the requirement that N is a measure (or at
least, that with probability 1, the values N(B) can be extended to a measure).
This is the concept of a random measure [26, 42].

Formally, then, a point process may be defined as a random measure in
which the values N(B) are nonnegative integers [15, 42]. We usually also
assume that the point process is locally finite:

N(B) < ∞ with probability 1
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for all bounded B ⊂ Rd. That is, any bounded region contains only a finite
number of points, with probability 1. We also assume that the point process
is simple:

N({x}) ≤ 1 for all x ∈ Rd

with probability 1. That is, with probability 1, no two points of the process
are coincident. A simple point process can be regarded as a random set of
points.

For example, the binomial process introduced in Section 1.3 is locally finite
(since N(B) ≤ n for all B) and it is simple because there is zero probability
that two independent, uniformly distributed random points coincide:

P(X1 = X2) = E [P (X1 = X2 | X2)] = 0.

Hence the binomial process is a point process in the sense of this definition.

Random Set Formalism

A simple point process can be formulated in a completely different way since
it may be regarded as a random set X. Interestingly, the vacancy indicators
V (B) contain complete information about the process. If we know the value
of V (B) for all sets B, then we can determine the exact location of each point
x in the (simple) point process X. To do this, let G be the union of all open
sets B such that V (B) = 1. The complement of G is a locally finite set of
points, and this identifies the random set X.

The vacancy indicators must satisfy

V (A ∪B) = min{V (A), V (B)}

for any sets A,B, and have other properties analogous to those of the count
variables N(B). Thus we could alternatively define a simple point process as
a random function V satisfying these properties almost surely. This approach
is intimately related to the theory of random closed sets [27, 31, 32].

In the rest of these lectures, we shall often swap between the notation X
(for a point process when it is considered as a random set) and N or NX (for
the counting variables associated with the same point process).

1.5 Poisson Processes

One-dimensional Poisson Process

Readers may be familiar with the concept of a Poisson point process in one-
dimensional time (e.g. [28, 37]). Suppose we make the following assumptions:

1. The number of points which arrive in a given time interval has expected
value proportional to the duration of the interval:

EN(a, b] = β(b− a)

where β > 0 is the rate or intensity of the process;
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2. Arrivals in disjoint intervals of time are independent: if a1 < b1 < a2 <
b2 < . . . < am < bm then the random variables N(a1, b1], . . . , N(am, bm]
are independent;

3. The probability of two or more arrivals in a given time interval is asymp-
totically of uniformly smaller order than the length of the interval:

P(N(a, a + h] ≥ 2) = o(h), h ↓ 0.

For example these would be reasonable assumptions to make about the arrival
of cosmic particles at a particle detector, or the occurrence of accidents in a
large city.

From these assumptions it follows that the number of points arriving in a
given time interval must have a Poisson distribution:

N(a, b] ∼ Poisson(β(b− a))

where Poisson(µ) denotes the Poisson distribution with mean µ, defined by

P(N = k) = e−µ µk

k!
, k = 0, 1, 2, . . . (1)

This conclusion follows by splitting the interval (a, b] into a large number n of
small intervals. The number of arrivals in each small interval is equal to 0 or
1, except for an event of small probability. Since N(a, b] is the sum of these
numbers, it has an approximately binomial distribution. Letting n → ∞ we
obtain that N(a, b] must have a Poisson distribution.

Definition 1.1. The one-dimensional Poisson process, with uniform in-
tensity β > 0, is a point process in R such that

[PP1] for every bounded interval (a, b], the count N(a, b] has a Poisson
distribution with mean β(b− a);
[PP2] if (a1, b1], . . . , (am, bm] are disjoint bounded intervals, then the
counts N(a1, b1], . . . , N(am, bm] are independent random variables.

Other properties of the one-dimensional Poisson process include

1. The inter-arrival times Si have an exponential distribution with rate β:

P(Si ≤ s) = 1− e−βs, s > 0.

2. The inter-arrival times Si are independent.
3. The ith arrival time Ti has an Erlang or Gamma distribution with para-

meters α = i and β. The Gamma(α, β) probability density is

f(t) =
βα

Γ (α)
tα−1e−βt

for t > 0, and 0 otherwise.
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Fig. 10. Realisation of the one-dimensional Poisson process with uniform intensity 1
in the time interval [0, 30]. Tick marks indicate the arrival times.

Properties 1 and 2 above suggest an easy way to generate simulated reali-
sations of the Poisson process on [0,∞). We simply generate a sequence of
independent, exponentially distributed, random variables S1, S2, . . . and take
the arrival times to be Ti =

∑
1≤j≤i Sj .

We may also study inhomogeneous Poisson processes in which the
number of arrivals in (a, b] is

E N(a, b] =
∫ b

a
β(t) dt

where β(t) > 0 is a function called the (instantaneous) intensity function.
The probability that there will be a point of this process in an infinitesimal
interval [t, t+ dt] is β(t) dt. Arrivals in disjoint time intervals are independent.

Spatial Poisson Process

The Poisson process can be generalised to two-dimensional space.

Definition 1.2. The spatial Poisson process, with uniform intensity β >
0, is a point process in R2 such that

[PP1] for every bounded closed set B, the count N(B) has a Poisson
distribution with mean βλ2(B);
[PP2] if B1, . . . , Bm are disjoint regions, then N(B1), . . . , N(Bm) are in-
dependent.

Here λ2(B) again denotes the area of B.

It turns out that these two properties uniquely characterise the Poisson
process. The constant β is the expected number of points per unit area. It has
dimensions length−2 or “points per unit area”.

As in the one-dimensional case, the spatial Poisson process can be derived
by starting from a few reasonable assumptions: that EN(B) = βλ2(B); that
P(N(B) > 1) = o(λ2(B)) for small λ2(B); and that events in disjoint regions
are independent.

An important fact about the Poisson process is the following.

Lemma 1.1 (Conditional Property). Consider a Poisson point process in
R2 with uniform intensity β > 0. Let W ⊂ R2 be any region with 0 < λ2(W ) <
∞. Given that N(W ) = n, the conditional distribution of N(B) for B ⊆ W
is binomial:
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Fig. 11. Three different realisations of the Poisson process with uniform intensity
5 in the unit square.

P (N(B) = k | N(W ) = n) =
(

n

k

)
pk(1− p)n−k

where p = λ2(B)/λ2(W ). Furthermore the conditional joint distribution of
N(B1), . . . , N(Bm) for any B1, . . . , Bm ⊆ W is the same as the joint distrib-
ution of these variables in a binomial process.

In other words, given that there are n points of the Poisson process in W ,
these n points are conditionally independent and uniformly distributed in W .

Proof. Let 0 ≤ k ≤ n. Then

P (N(B) = k | N(W ) = n) =
P(N(B) = k, N(W ) = n)

P(N(W ) = n)

=
P(N(B) = k, N(W \ B) = n− k)

P(N(W ) = n)
.

By the independence property (PP2) the numerator can be rewritten

P(N(B) = k, N(W \ B) = n− k) = P(N(B) = k) P(N(W \ B) = n− k)

We may then evaluate the numerator and denominator using (PP1) to give

P (N(B) = k | N(W ) = n) =
e−βλ2(B) (βλ2(B))k

k! e−βλ2(W\B) (βλ2(W\B))n−k

(n−k)!

e−βλ2(W ) (βλ2(W ))n

n!

=
n!

k! (n− k)!

(
λ2(B)
λ2(W )

)k (λ2(W \ B)
λ2(W )

)n−k

=
(

n

k

)
pk(1− p)n−k

where p = λ2(B)/λ2(W ). 12

Thus, for example, Figure 9 can also be taken as a realisation of a Poisson
process in the unit square W , in which it happens that there are exactly 100
points in W . The only distinction between a binomial process and a Poisson
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process in W is that different realisations of the Poisson process will consist
of different numbers of points.

The conditional property also gives us a direct way to simulate Poisson
processes. To generate a realisation of a Poisson process of intensity β in W ,
we first generate a random variable M with a Poisson distribution with mean
βλ2(W ). Given M = m, we then generate m independent uniform random
points in W .

General Poisson Process

To define a uniform Poisson point process in Rd, or an inhomogeneous Poisson
process in Rd, or a Poisson point process on some other space S, the following
general definition can be used.

Definition 1.3. Let S be a space, and Λ a measure on S. (We require S to
be a locally compact metric space, and Λ a measure which is finite on every
compact set and which has no atoms.)

The Poisson process on S with intensity measure Λ is a point process
on S such that

[PP1] for every compact set B ⊂ S, the count N(B) has a Poisson dis-
tribution with mean Λ(B);
[PP2] if B1, . . . , Bm are disjoint compact sets, then N(B1), . . . , N(Bm)
are independent.

Example 1.1 (Poisson process in three dimensions). The uniform Poisson
process on R3 with intensity β > 0 is defined by taking S = R3 and
Λ(B) = βλ3(B).

Example 1.2 (Inhomogeneous Poisson process). The inhomogeneous Poisson
process on R2 with intensity function β(u), u ∈ R2 is defined by taking
S = R2 and Λ(B) =

∫
B β(u) du. See Figure 12.

Example 1.3 (Poisson process on the sphere). Take S to be the unit sphere
(surface of the unit ball in three dimensions) and Λ = βµ, where β > 0 and µ
is the uniform area measure on S with total mass 4π. This yields the uniform
Poisson point process on the unit sphere, with intensity β. This process has a
finite number of points, almost surely. Indeed the total number of points N(S)
is a Poisson random variable with mean Λ(S) = βµ(S) = 4πβ. See Figure 13.

1.6 Distributional Characterisation

In Section 1.5 we discussed the fact that a Poisson process in a bounded region
W , conditioned on the total number of points in W , is equivalent to a binomial
process. This was expressed somewhat vaguely, because we do not yet have
the tools needed to determine whether two point processes are ‘equivalent’ in
distribution. We now develop such tools.
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Fig. 12. Realisation of an inhomogeneous Poisson process in the unit square, with
intensity function β(x, y) = exp(2 + 5x).

Fig. 13. Uniform Poisson point process on the surface of the Earth. Intensity is
β = 100 points per solid radian; the expected total number of points is 4π × 100 =
1256.6. Orthogonal projection from a position directly above Martina Franca.

Space of Outcomes

Like any random phenomenon, a point process can be described in statistical
terms by defining the space of possible outcomes and then specifying the
probabilities of different events (an event is a subset of all possible outcomes).

The space of realisations of a point process in Rd is N, the set of all counting
measures on Rd, where a counting measure is a nonnegative integer valued
measure which has a finite value on every compact set.

A basic event about the point process is the event that there are exactly
k points in the region B,
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EB,k = {N(B) = k} = {N ∈ N : N(B) = k}

for compact B ⊂ Rd and integer k = 0, 1, 2, . . ..

Definition 1.4. Let N be the set of all counting measures on Rd. Let N be the
σ-field of subsets of N generated by all events of the form EB,k. The space N
equipped with its σ-field N is called the canonical space or outcome space
for a point process in Rd.

The σ-field N includes events such as

EB1,k1 ∩ . . . ∩ EBm,km = {N ∈ N : N(B1) = k1, . . . , N(Bm) = km} ,

i.e. the event that there are exactly ki points in region Bi for i = 1, . . . , m. It
also includes, for example, the event that the point process has no points at
all,

{N ≡ 0} = {N ∈ N : N(B) = 0 for all B}
since this event can be represented as the intersection of the countable se-
quence of events Eb(0,n),0 for n = 1, 2, . . .. Here b(0, r) denotes the ball of
radius r and centre 0 in Rd.

A point process X may now be defined formally, using its counting measure
N = NX, as a measurable map N : Ω → N from a probability space (Ω,A, P)
to the outcome space (N,N ). Thus, each elementary outcome ω ∈ Ω deter-
mines an outcome Nω ∈ N for the entire point process. Measurability is the
requirement that, for any event E ∈ N , the event

{N ∈ E} = {ω ∈ Ω : Nω ∈ E}

belongs to A. This implies that any such event has a well-defined probabil-
ity P(N ∈ E). For example, the probability that the point process is empty,
P(N ≡ 0), is well defined.

The construction of N guarantees that, if N is a point process on a prob-
ability space (Ω,A, P), then the variables N(B) for each compact set B are
random variables on the same probability space. In fact N is the minimal
σ-field on N which guarantees this.

Definition 1.5. The distribution of a point process X is the probability mea-
sure PX, on the outcome space (N,N ), defined by

PX(A) = P(NX ∈ A), A ∈ N .

For example, the distribution of a point process specifies the values of joint
probabilities

P(N(B) = k and N(B′) = k′)

for two sets B,B′ and integers k, k′; it also specifies the probability that the
entire point process is empty,

P(N ≡ 0) = P(X = ∅).
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Characterisations of a Point Process Distribution

The distribution of a point process may be characterised using either the
joint distributions of the variables N(B), or the marginal distributions of the
variables V (B). First we consider the count variables N(B).

Definition 1.6. The finite-dimensional distributions or fidis of a point
process are the joint probability distributions of

(N(B1), . . . , N(Bm))

for all finite integers m > 0 and all compact B1, B2, . . ..

Equivalently, the fidis specify the probabilities of all events of the form

{N(B1) = k1, . . . , N(Bm) = km}

involving finitely many regions.
Clearly the fidis of a point process convey only a subset of the informa-

tion conveyed in its distribution. Probabilities of events such as {X = ∅} are
not specified in the fidis, since they cannot be expressed in terms of a finite
number of compact regions. However, it turns out that the fidis are sufficient
to characterise the entire distribution.

Theorem 1.1. Let X and Y be two point processes. If the fidis of X and of
Y coincide, then X and Y have the same distribution.

Corollary 1.1. If X is a point process satisfying axioms (PP1) and (PP2)
then X is a Poisson process.

A simple point process (Section 1.4) can be regarded as a random set of points.
In this case the vacancy probabilities are useful. The capacity functional of
a simple point process X is the functional

T (K) = P(N(K) > 0), K compact.

This is a very small subset of the information conveyed by the fidis, since
T (K) = 1 − P(EK,0). However, surprisingly, it turns out that the capacity
functional is sufficient to determine the entire distribution.

Theorem 1.2. Suppose X and Y are two simple point processes whose ca-
pacity functionals are identical. Then their distributions are identical.

Corollary 1.2. A simple point process is a uniform Poisson process of inten-
sity β if and only if its capacity functional is

T (K) = 1− exp{−βλd(K)}

for all compact K ⊂ Rd.
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Corollary 1.3. A simple point process is a binomial process (of n points in
W ) if and only if its capacity functional is

T (K) = 1−
(

1− λd(K ∩W )
λd(W )

)n

for all compact K ⊂ Rd.

This characterisation of the binomial process now makes it easy to prove the
conditional property of the Poisson process described in the last section.

Note that the results above do not provide a simple way to construct a
point process ab initio. Theorem 1.1 does not say that any given choice of
finite dimensional distributions will automatically determine a point process
distribution. On the contrary, the fidis must satisfy a suite of conditions (self-
consistency, continuity) if they are to correspond to a point process. Hence,
the fidis are not a very practical route to the construction of point processes.
More practical methods of construction are described in Section 1.7.

The concept of a stationary point process plays an important role.

Definition 1.7. A point process X in Rd is called stationary if, for any fixed
vector v ∈ Rd, the distribution of the shifted point process X + v (obtained by
shifting each point x ∈ X to x + v) is identical to the distribution of X.

Lemma 1.2. A point process is stationary if and only if its capacity functional
is invariant under translations, T (K) = T (K+v) for all compact sets K ⊂ Rd

and all v ∈ Rd.

For example, the uniform Poisson process is stationary, since its capacity
functional T (K) is clearly invariant under translation.

Similarly, a point process is called isotropic if its distribution is invariant
under all rotations of Rd. The uniform Poisson process is isotropic.

1.7 Transforming a Point Process

One pragmatic way to construct a new point process is by transforming or
changing an existing point process. Convenient transformations include map-
ping, thinning, superposition, and clustering.

Mapping

Figure 14 sketches in one dimension the concept of mapping a point process
X to another point process by applying a fixed transformation s : Rd → Rd to
each individual point of X. The resulting point process is thus Y =

⋃
x∈X s(x).

For example, the mapping s(x) = ax where a > 0 would rescale the entire
point process by the constant scale factor a.
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t

s(t)

Fig. 14. Application of a transformation s to each individual point in a point process

A vector translation s(x) = x+ v, where v ∈ Rd is fixed, shifts all points of X
by the same vector v. If the original process X is a uniform Poisson process,
then the translated point process Y is also a uniform Poisson process with
the same intensity, as we saw above.

Any mapping s which has a continuous inverse, or at least which satisfies

0 < λd(s−1(B)) <∞ whenever B is compact (2)

transforms a uniform Poisson process into another Poisson process, generally
an inhomogeneous one.

An important caution is that, if the transformation s does not satisfy (2),
then in general we cannot even be sure that the transformed point process Y
is well defined, since the points of Y may not be locally finite. For example,
consider the projection of the cartesian plane onto the x-axis, s(x, y) = x.
If X is a uniform Poisson process in R2 then the projection onto the x-axis
is everywhere dense: there are infinitely many projected points in any open
interval (a, b) in the x-axis, almost surely, since s−1((a, b)) = (a, b)×R. Hence,
the projection of X onto the x-axis is not a well-defined point process.

Thinning

Figure 15 sketches the operation of thinning a point process X, by which
some of the points of X are deleted. The remaining, undeleted points form
the thinned point process Y. We may formalise the thinning procedure by
supposing that each point x ∈ X is labelled with an indicator random variable
Ix taking the value 1 if the point x is to be retained, and 0 if it is to be deleted.
Then the thinned process consists of those points x ∈ X with Ix = 1.

Independent thinning is the case where the indicators Ix are indepen-
dent. If a uniform Poisson process is subjected to independent thinning, the
resulting thinned process is also Poisson.
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Fig. 15. Thinning a point process. Points of the original process (above) are either
retained (solid lines) or deleted (dotted lines) to yield a thinned process (below).

Fig. 16. Dependent thinning: simulated realisations of Matern’s Model I (left) and
Model II (right). Both are derived from a Poisson process of intensity 200 in the
unit square, and have the same inhibition radius r = 0.05.

Examples of dependent thinning are the two models of Matérn [30] for
spatial inhibition between points. In Model I, we start with a uniform Poisson
process X in R2, and delete any point which has a close neighbour (closer than
a distance r, say). Thus Ix = 1 if ||x− x′|| ≤ r for any x′ ∈ X. In Model II,
we start with a uniform Poisson process X in R2× [0, 1], interpreting this as a
process of two-dimensional points x ∈ R2 with ‘arrival times’ t ∈ [0, 1]. Then
we delete any point which has a close neighbour whose arrival time was earlier
than the point in question. Thus I(x,t) = 1 if ||x− x′|| ≤ r and t > t′ for any
(x′, t′) ∈ X. The arrival times are then discarded to give us a point process in
R2. Simulated realisations of these two models are shown in Figure 16.

Superposition

Figure 17 sketches the superposition of two point processes X and Y which
consists of all points in the union X∪Y. If we denote by NX(B) and NY(B)
the numbers of points of X and Y respectively in a region B ⊂ Rd, then
the superposition has NX∪Y(B) = NX(B) + NY(B) assuming there are no
coincident points. Superposition can thus be viewed either as the union of sets
or as the sum of measures.

If X and Y are independent, with capacity functionals TX, TY, then the
superposition has capacity functional TX∪Y(K) = 1−(1−TX(K))(1−TY(K)).
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X

Y

X+Y

Fig. 17. Superposition of two point processes

The superposition of two independent Poisson processes X and Y, say uniform
Poisson processes of intensity µ and ν respectively, is a uniform Poisson process
of intensity µ + ν.

Cluster Formation

X

Y

Z1
Z2

Z3
Z4

Fig. 18. Schematic concept of the formation of a cluster process.

Finally, in a cluster process, we start with a point process X and replace each
point x ∈ X by a random finite set of points Zx called the cluster associated
with x. The superposition of all clusters yields the process Y =

⋃
x∈X Zx. See

Figure 18.
Usually it is assumed that the clusters Zx for different parent points x are

independent processes. A simple example is the Matérn cluster process
in which the ‘parent’ process X is a uniform Poisson process in R2, and each
cluster Zx consists of a random number Mx of points, where Mx ∼ Poisson(µ),
independently and uniformly distributed in the disc b(x, r) of radius r centred
on x. Simulated realisations of this process are shown in Figure 19.

1.8 Marked Point Processes

Earlier we mentioned the idea that the points of a point process might be
labelled with extra information called marks. For example, in a map of the
locations of emergency calls, each point might carry a label stating the time
of the call and the nature of the emergency.

A marked point can be formalised as a pair (x,m) where x is the point
location and m is the mark attached to it.
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Fig. 19. Simulated realisations of the Matérn cluster process in the unit square.
Left: parent intensity β = 5, mean cluster size µ = 20, cluster radius r = 0.07. Right:
β = 50, µ = 2, r = 0.07. Both processes have an average of 100 points in the square.

Definition 1.8. A marked point process on a space S with marks in a
space M is a point process Y on S ×M such that NY (K ×M) < ∞ a.s. for
all compact K ⊂ S. That is, the corresponding projected process (of points
without marks) is locally finite.

Note that the space of marks M can be very general. It may be a finite set, a
continuous interval of real numbers, or a more complicated space such as the
set of all convex polygons.

Fig. 20. Realisations of marked point processes in the unit square. Left: finite mark
space M = {a, b, c}, marks plotted as symbols ", O, +. Right: continuous mark
space M = [0,∞), marks plotted as radii of circles.

Example 1.4. Let Y be a uniform Poisson process in R3 = R2×R. This cannot
be interpreted as a marked point process in R2 with marks in R, because the
finiteness condition fails. The set of marked points (x,m) which project into
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a given compact set K ⊂ R2 is the solid region K × R, which has infinite
volume, and hence contains infinitely many marked points, almost surely.

Example 1.5. Let Y be a uniform Poisson process on the three-dimensional
slab R2 × [0, a] with intensity β. This can be interpreted as a marked point
process on R2 with marks in M = [0, a]. The finiteness condition is clearly
satisfied. The projected point process (i.e. obtained by ignoring the marks)
is a uniform Poisson process in R2 with intensity βa. By properties of the
uniform distribution, the marks attached to different points are independent
and uniformly distributed in [0, a].

A marked point process formed by attaching independent random marks to a
Poisson process of locations, is equivalent to a Poisson process in the product
space.

Theorem 1.3. Let Y be a marked point process on S with marks in M . Let
X be the projected process in S (of points without marks). Then the following
are equivalent:

1. X is a Poisson process in S with intensity µ, and given X, the marks
attached to the points of X are independent and identically distributed
with common distribution Q on M ;

2. Y is a Poisson process in S ×M with intensity measure µ⊗Q.

See e.g. [28]. This result can be obtained by comparing the capacity functionals
of the two processes.

Marked point processes are also used in the formal description of opera-
tions like thinning and clustering. For example, thinning a point process X
is formalised by construct a marked point process with marks in {0, 1}. The
mark Ix attached to each point x indicates whether the point is to be retained
(1) or deleted (0).

1.9 Distances in Point Processes

One simple way to analyse a point process is in terms of the distances between
points. If X is a point process, let dist(u,X) for u ∈ Rd denote the shortest
distance from the given location u to the nearest point of X. This is sometimes
called the contact distance. Note the key fact that

dist(u,X) ≤ r if and only if N(b(u, r)) > 0

where b(u, r) is the disc of radius r centred at x. Since N(b(u, r)) is a random
variable for fixed u and r, the event {N(b(u, r)) > 0} is measurable, so the
event {dist(u,X) ≤ r} is measurable for all r, which implies that the contact
distance dist(u,X) is a well-defined random variable.

If X is a uniform Poisson process in Rd of intensity β, then this insight
also gives us the distribution of dist(u,X):
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Fig. 21. The contact distance dist(u,X) from a fixed location (◦) to the nearest
random point (•) satisfies dist(u,X) > r if and only if there are no random points
in the disc of radius r centred on the fixed location.

P(dist(u,X) ≤ r) = P(N(b(u, r)) > 0)
= 1− exp(−βλd(b(u, r)))
= 1− exp(−βκdr

d)

where κd = λd(b(0, 1)) is the volume of the unit ball in Rd.
One interesting way to rephrase this is that V = κddist(u,X)d has an

exponential distribution with rate β,

P(V ≤ v) = 1− exp(−βv).

Notice that V is the volume of the ball of random radius dist(u,X), or equiv-
alently, the volume of the largest ball centred on u that contains no points of
X.

Definition 1.9. Let X be a stationary point process in Rd. The contact dis-
tribution function or empty space function F is the cumulative distrib-
ution function of the distance

R = dist(u,X)

from a fixed point u to the nearest point of X. That is

F (r) = P(dist(u,X) ≤ r)
= P(N(b(u, r)) > 0).

By stationarity this does not depend on u.

Notice that F (r) = T (b(0, r)) = T (b(u, r)), where T is the capacity functional
of X. Thus the empty space function F gives us the values of the capacity
functional T (K) for all discs K. This does not fully determine T , and hence
does not fully characterise X. However, F gives us a lot of qualitative infor-
mation about X. The empty space function is a simple property of the point
process that is useful in data analysis.
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1.10 Estimation from Data

In applications, spatial point pattern data usually take the form of a finite
configuration of points x = {x1, . . . , xn} in a region (window) W , where
xi ∈W and where n = n(x) ≥ 0 is not fixed. The data would often be treated
as a realisation of a stationary point process X inside W . It is then important
to estimate properties of the process X.

An unbiased estimator of F is

F̂ (r) =
1

λd(W )

∫

W
1{dist(u,X) ≤ r} du. (3)

This is an unbiased estimator of F (r), for each fixed value of r, since

E
[
F̂ (r)

]
=

1
λd(W )

E
[∫

W
1{dist(u,X) ≤ r} du

]

=
1

λd(W )

∫

W
E1{dist(u,X) ≤ r} du

=
1

λd(W )

∫

W
P(dist(u,X) ≤ r) du

=
1

λd(W )

∫

W
F (r) du

= F (r)

where the penultimate line follows by the stationarity of X.
A practical problem is that, if we only observe X ∩W , the integrand in

(3) is not observable. When u is a point close to the boundary of the window
W , the point of X nearest to u may lie outside W . More precisely, we have
dist(u,X) ≤ r if and only if n(X∩ b(u, r)) > 0. But our data are a realisation
of X ∩W , so we can only evaluate n(X ∩W ∩ b(u, r)).

It was once a common mistake to ignore this, and simply to replace X by
X∩W in (3). But this results in a negatively biased estimator of F . Call the
estimator F̂W (r). Since n(X ∩W ∩ b(u, r)) ≤ n(X ∩ b(u, r)), we have

1{n(X ∩W ∩ b(u, r)) > 0} ≤ 1{n(X ∩ b(u, r)) > 0}

so that EF̂W (r) ≤ F (r). This is called a bias due to edge effects.
One simple strategy for eliminating the edge effect bias is the border

method. When estimating F (r), we replace W in equation (3) by the erosion

W−r = W 5 b(0, r) = {x ∈ W : dist(x, ∂W ) ≥ r}

consisting of all points of W that are at least r units away from the boundary
∂W . Clearly, u ∈ W−r if and only if b(u, r) ⊂ W . Thus, n(x ∩ b(u, r)) is
observable when u ∈W−r. Thus we estimate F (r) by
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Fig. 22. Edge effect problem for estimation of the empty space function F . If we
can only observe the points of X inside a window W (bold rectangle), then for some
reference points u in W (open circle) it cannot be determined whether there is a
point of X within a distance r of u. This problem occurs if u is closer than distance
r to the boundary of W .

F̂b(r) =
1

λ2(W−r)

∫

W−r

1{dist(u,x) ≤ r} du. (4)

This is observable, and by the previous argument, it is an unbiased estimator
of F (r).

For a survey of corrections for edge effects, see [2].

1.11 Computer Exercises

Software is available for generating simulated realisations of point processes
as shown above. The user needs access to the statistical package R, which
can be downloaded free from the R website [13] and is very easy to install.
Introductions to R are available at [23, 38].

We have written a library spatstat in the R language for performing
point pattern data analysis and simulation. See [8] for an introduction. The
spatstat library should also be downloaded from the R website [13], and
installed in R.

The following commands in R will then generate and plot simulations of
the point processes shown in Figures 9, 11, 12, 16, 19 and 20 above.

library(spatstat)
X <- runifpoint(100)
plot(X)
X <- rpoispp(5)
plot(X)
X <- rpoispp(function(x, y) { exp( 2 + 5 * x) })
plot(X)
plot(rMaternI(200, 0.05))
plot(rMaternII(200, 0.05))
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plot(rMatClust(5, 0.07, 20))
plot(rMatClust(50, 0.07, 2))
X <- rpoispp(100)
M <- sample(1:3, X$n, replace=TRUE)
plot(X %mark% M)
M <- rexp(X$n)
plot(X %mark% M)

Further information on each command can be obtained by typing
help(command ) in R.
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Fig. 23. Left: the cells point pattern dataset. Right: estimated empty space func-
tion F (r) plotted against r (solid lines) together with the empty space function of
a Poisson process (dotted lines).

The spatstat library also contains point pattern datasets and techniques for
analysing them. In particular the function Fest will estimate the contact dis-
tribution function or empty space function F (defined in Section 1.9) from an
observed realisation of a stationary point process. The following commands
access the cells point pattern dataset, plot the data, then compute an esti-
mate of F and plot this function.

data(cells)
plot(cells)
Fc <- Fest(cells)
plot(Fc)

The resulting plots are shown in Figure 23. There is a striking discrepancy
between the estimated function F and the function expected for a Poisson
process, indicating that the data cannot be treated as Poisson.
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2 Moments and Summary Statistics

In this lecture we describe the analogue, for point processes, of the moments
(expected value, variance and higher moments) of a random variable. These
quantities are useful in theoretical study of point processes and in statistical
inference about point patterns.

The intensity or first moment of a point process is the analogue of the
expected value of a random variable. Campbell’s formula is an important
result for the intensity. The ‘second moment measure’ is related to the variance
or covariance of random variables. The K function and pair correlation are
derived second-moment properties which have many applications in the statis-
tical analysis of spatial point patterns [16, 43]. The second-moment properties
of some point processes will be found here. In the computer exercises we will
compute statistical estimates of the K function from spatial point pattern
data sets.

2.1 Intensity

Definition 2.1. Let X be a point process on S = Rd (or on any locally com-
pact metric space S). Writing

ν(B) = E[NX(B)], B ⊂ S,

defines a measure ν on S, called the intensity measure of X, provided
ν(B) <∞ for all compact B.

Example 2.1 (Binomial process). The binomial point process (Section 1.3)
of n points in a region W ⊂ Rd has N(B) ∼ binomial(n, p) where p =
λd(B ∩W )/λd(W ) so

ν(B) = EN(B) = np = n
λd(B ∩W )
λd(W )

.

Thus ν(B) is proportional to the volume of B ∩W .

Example 2.2 (Poisson process). The uniform Poisson process of intensity β >
0 has N(B) ∼ Poisson(βλd(B)) so

ν(B) = βλd(B).

Thus ν(B) is proportional to the volume of B.

Example 2.3 (Translated grid). Suppose U1, U2 are independent random vari-
ables uniformly distributed in [0, s]. Let X be the point process consisting of
all points with coordinates (U1 + ms,U2 + ns) for all integers m,n. A realisa-
tion of this process is a square grid of points in R2, with grid spacing s, which
has been randomly translated. See Figure 24. It is easy to show that
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ν(B) = EN(B) =
1
s2
λ2(B)

for any set B in R2 of finite area. This principle is important in applications
to stereology [4].

Fig. 24. A randomly translated square grid.

If X is a stationary point process in Rd, then

ν(B + v) = EN(B + v) = EN(B) = ν(B)

for all v ∈ Rd. That is, the intensity measure of a stationary point process is
invariant under translations. But we know that the only such measures are
multiples of Lebesgue measure:

Theorem 2.1. If ν is a translation-invariant measure on Rd then ν(B) =
cλd(B) for some c ≥ 0.

Corollary 1 If X is a stationary point process in Rd, then its intensity mea-
sure ν is a constant multiple of Lebesgue measure λd.

The constant c in Corollary 1 is often called the intensity of X.

Definition 2.2. Suppose the intensity measure ν of a point process X in Rd

satisfies

ν(B) =
∫

B
β(u) du

for some function β. Then we call β the intensity function of X.

If it exists, the intensity function has the interpretation that in a small region
dx ⊂ Rd

P(N(dx) > 0) ∼ EN(dx) ∼ β(x) dx.

For the uniform Poisson process with intensity β > 0, the intensity function
is obviously β(u) ≡ β. The randomly translated square grid (Example 2.3)
is a stationary process with intensity measure ν(B) = βλ2(B), so it has an
intensity function, β(u) ≡ 1/s2.
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Theorem 2.2 (Campbell’s Formula). Let X be a point process on S and
let f : S → R be a measurable function. Then the random sum

T =
∑

x∈X

f(x)

is a random variable, with expected value

E
[
∑

x∈X

f(x)

]
=
∫

S
f(x) ν(dx). (5)

In the special case where X is a point process on Rd with an intensity function
β, Campbell’s Formula becomes

E
[
∑

x∈X

f(x)

]
=
∫

Rd

f(x)β(x) dx.

Campbell’s Formula applies even to non-simple point processes (i.e. where
points may have a multiplicity greater than 1) if the terms in the sum in (5)
are counted with their multiplicity.

Proof. The result (5) is true when f is a step function, i.e. a function of the
form

f =
m∑

i=1

ci1Bi

for Bi ⊂ S compact and ci ∈ R, because in that case

T =
∑

x∈X

f(x) =
∑

x

∑

i

ci1Bi(x) =
∑

i

ciNX(Bi)

so

ET = E
[
∑

i

ciNX(Bi)

]
=
∑

i

ciEN(Bi) =
∑

i

ciν(Bi) =
∫

S
f(x) ν(dx).

The result for general f follows by monotone approximation. 12

Example 2.4 (Monte Carlo integration). Suppose we want to compute the in-
tegral

I =
∫

W
f(x) dx

where W ⊂ Rd and f is a nonnegative, integrable, real-valued function. Take
any point process X with intensity

λ(x) =
{

c if x ∈ W
0 if x (∈ W
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Evaluate the function f at the random points of X, and estimate the integral
I by the discrete sum approximation

Î =
1
c

∑

x∈X

f(x).

Then Campbell’s formula (5) gives

E[Î] =
1
c
E
[
∑

x∈X

f(x)

]
=

1
c

∫

Rd

f(x)λ(x) dx =
∫

W
f(x) dx = I

so that Î is an unbiased estimator of I.

Example 2.5 (Olbers’ Paradox). In 1826, the astronomer Heinrich Olbers
pointed out a physical paradox in the fact that the sky is dark at night.
Suppose we make the following assumptions: (i) the universe exists in 3-
dimensional Euclidean space R3; (ii) the stars currently visible from Earth
(with a given absolute magnitude) constitute a stationary point process in
R3; and (iii) the observed brilliance of the light reaching Earth from a star at
location x ∈ R3 is a/||x||2 where a is constant (the inverse square law).

Then the expected total brilliance of the night sky is infinite:

E




∑

x∈X\Earth

a

||x||2



 = λ

∫

R3\Earth

a

||x||2 dx = ∞.

By this argument, 19th century physicists realized that, in a stable, infinite
universe with an even distribution of stars, the entire universe should gradually
heat up. The paradox led to a review of the theory of thermodynamics.

Example 2.6. Suppose X consists of a fixed, finite number of random points
in Rd, say X = {X1, . . . , Xn}. Assume Xi has a marginal probability density
fi(u), u ∈ Rd. Then X has intensity function β(u) =

∑n
i=1 fi(u).

Example 2.7. Consider a Poisson cluster process Y (Section 1.7). This is
formed by taking a uniform Poisson process X of parent points, with intensity
α, and replacing each x ∈ X by a random cluster Zx which is a finite point
process.

Suppose Zx has intensity function f(u | x). Then conditional on X , the
process Y has intensity function

βY|X(u) =
∑

x∈X

f(u | x)

It is not hard to show that the (unconditional) intensity function β of Y is
the expectation with respect to X,
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β(u) = E
[
βY|X(u)

]

= E
∑

x∈X

f(u | x)

= α

∫

Rd

f(u | x) dx

by Campbell’s formula.
For example, in Matérn’s cluster process, a cluster Zx consists of a

Poisson(µ) random number of points, uniformly distributed in the disc b(x, r)
of radius r centred on x. This has intensity f(u | x) = µ/(πr2) if u ∈ b(x, r)
and 0 otherwise. Now

∫

Rd

f(u | x) dx =
µ

πr2

∫

Rd

1{u ∈ b(x, r)} dx

=
µ

πr2

∫

Rd

1{x ∈ b(u, r)} dx

= µ.

Hence Matérn’s cluster process has intensity β(u) = αµ.

2.2 Intensity for Marked Point Processes

Marked point processes were introduced in Section 1.8. Let Y be a marked
point process on the space S with marks in a space M . Viewing Y as a point
process on S×M , we may extend the definition of intensity measure to marked
point processes without further work.

The intensity measure of Y is (by Definition 2.1) a measure ν on S ×M
defined by

ν(U) = ENY(U), U ⊂ S ×M.

It is completely determined by the values

ν(B × C) = ENY(B × C)

= E
∑

(x,m)∈Y

1{x ∈ B}1{m ∈ C}

for all compact B ⊂ S and measurable C ⊂M .
For marked point processes, Campbell’s Formula takes the form

E
∑

(x,m)∈Y

f(x,m) =
∫

S×M
f(x,m) ν(dx, dm) (6)

where f : S ×M → R is a measurable function.
Differences between marked and unmarked point processes arise with re-

gard to the concept of stationarity.
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Definition 2.3. A marked point process on Rd with marks in M is station-
ary if its distribution is invariant under shifts of Rd only

(x,m) 6→ (x + v,m)

for all v ∈ Rd.

Note that the shift operation changes the location of a point but does not
alter the mark attached to it.

Theorem 2.3. Let Y be a stationary marked point process in Rd. Assume
the corresponding process of unmarked points has finite intensity (that is
ENY (K ×M) < ∞ for all compact K ⊂ Rd).

Then the intensity measure ν of Y takes the form

ν(A×B) = βλd(A)Q(B) (7)

for all A ⊂ Rd, B ⊂ M , where β ≥ 0 is the intensity (expected number
of points per unit volume), and Q is a probability measure on M called the
distribution of the typical mark.

As a simple example of (7), consider a point process consisting of points of
three colours. This may be formalised as a marked point process in R2 in
which the marks are colours, M = {red, green,blue}. For a region A ⊂ R2,
the quantity ν(A× {red}) is the expected number of red points in A, and by
equation (7), this is equal to βλ2(A)Q({red}), a constant times the area of A
times the probability of the colour red.

Proof. Since Y is stationary, ν is invariant under shifts of Rd,

ν(A×B) = ν((A + v)×B)

for all A ⊂ Rd, B ⊂ M and all translation vectors v ∈ Rd. If we fix B and
define

µB(A) = ν(A×B)

for all A ⊂ Rd, then µB is a measure on Rd which is invariant under transla-
tions. It follows from Theorem 2.1 that, for fixed B,

ν(A×B) = cB λd(A)

for all A ⊂ Rd, where cB is a constant depending on B.
On the other hand, if we fix A to be the unit cube, and define κ(B) =

ν(A × B) = cBλd(A) = cB , then κ is a measure on M satisfying κ(M) =
ν(A × M) = ENY (A × M) < ∞ by assumption. Letting β = κ(M) and
Q(B) = κ(B)/β yields the result. 12
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The argument we have just seen is often called factorisation or disinte-
gration. It exploits the property that the intensity measure is invariant with
respect to translations on the first factor of the product Rd ×M . We shall
have occasion to use the same argument many times.

For a stationary marked point process, Campbell’s formula becomes

E




∑

(x,m)∈Y

f(x,m)



 = βEQ

[∫

Rd

f(x,K)
]

(8)

where K denotes a random mark (a random element of M) with distribution
Q. As an exercise, the reader may like to use this to prove Olbers’ Paradox
(Example 2.5) in greater generality, treating the stars in the universe as a
stationary marked point process in R3, with the marks indicating the absolute
brightness of each star.

2.3 Second Moment Measures

Let X be a point process. We are interested in the variance of the count N(B),

varN(B) = E
[
N(B)2

]
− [EN(B)]2

and the covariance of two such counts,

cov[N(B1), N(B2)] = E [N(B1)N(B2)]− [EN(B1)] [EN(B2)].

A key observation is that N(B1)N(B2) is equal to the number of ordered pairs
(x, x′) of points in the process X such that x ∈ B1 and x′ ∈ B2.

Definition 2.4. Let X be a point process on a space S. Then X×X is a point
process on S×S consisting of all ordered pairs (x, x′) of points x, x′ ∈ X. The
intensity measure ν2 of X×X is a measure on S × S satisfying

ν2(A×B) = E [NX(A)NX(B)] .

This measure ν2 is called the second moment measure of X.

Clearly, the second moment measure contains all information about the vari-
ances and covariances of the variables NX(A). Campbell’s formula applied to
X×X becomes

E




∑

x∈X

∑

y∈X

f(x, y)



 =
∫

S

∫

S
f(x, y) ν2(dx, dy)

for a measurable function f : S × S → R.
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Example 2.8. For the uniform Poisson point process of intensity β > 0 in Rd,
the second moment measure satisfies

ν2(A×B) = β2λd(A)λd(B) + βλd(A ∩B).

Geometrically this means that the measure ν2 consists of two components:
there is a constant density β2 on all of Rd × Rd, plus a positive mass on the
diagonal ∆ =

{
(x, x) : x ∈ Rd

}
. The mass on the diagonal arises from the fact

that X×X includes pairs (x, x) of identical points. We could write the second
moment measure informally as

ν2(dx, dy) = β2 dx dy + β.δ(x− y) dx

where δ is the delta function. More formally

ν2 = β2λd ⊗ λd + βdiag−1λd

where diag(x, x) = x.

To remove the mass on the diagonal, and also to simplify the calculation of
certain moments, we introduce the second factorial moment measure

ν[2](A×B) = E[N(A)N(B)]− E[N(A ∩B)].

This is the intensity measure of the process X ∗ X of all ordered pairs of
distinct points of X. It satisfies

E




∑

x∈X

∑

y∈X, y (=x

f(x, y)



 =
∫

S

∫

S
f(x, y) ν[2](dx, dy).

The name ‘factorial’ is derived from

ν[2](A×A) = E
[
N(A)2

]
− E[N(A)]

= E [N(A)[N(A)− 1]] .

For example, for the uniform Poisson process of intensity β, the second facto-
rial moment measure is ν[2] = β2λd ⊗ λd.

Definition 2.5. A point process X on Rd is said to have second moment
density g2 if

ν[2](C) =
∫

C
g2(x, y) dx dy (9)

for any compact C ⊂ Rd × Rd.

Informally, g2(x, y) gives the joint probability that there will be points of X
at two specified locations x and y:
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P(N( dx) > 0, N( dy) > 0) ∼ g2(x, y) dx dy.

For example, the uniform Poisson process has second moment density g2(x, y)
= β2. The binomial process of n points in W has

g2(x, y) =
n(n− 1)
λd(W )2

if x, y ∈ W , and zero otherwise.

Definition 2.6. Suppose X is a point process on Rd which has an intensity
function β(x) and a second moment density g2(x, y). Then we define the pair
correlation function of X by

ρ2(x, y) =
g2(x, y)
β(x)β(y)

.

Example 2.9. For a uniform Poisson process of intensity β, we have β(x) ≡ β
and g2 ≡ β2, so that

ρ2(x, y) ≡ 1.

Example 2.10. For a binomial process of n points in a region W , we have

ρ2(x, y) ≡ 1− 1
n

.

Note that the pair correlation function always satisfies ρ2(x, y) ≥ 0. It should
be regarded as a ‘non-centred’ analogue of the usual correlation of random
variables. The value ρ2 = 1 corresponds to a lack of correlation in the usual
statistical sense: if ρ2 ≡ 1 then cov[N(B), N(B′)] = 0 for disjoint sets B,B′.

Example 2.11. Continuing Example 2.6, suppose X consists of a fixed, finite
number of random points in Rd, say X = {X1, . . . , Xn}. Let fi(u), u ∈ Rd be
the marginal probability density of Xi, and fij(u, v), u, v ∈ Rd the marginal
joint density of (Xi, Xj). Then X has second moment density

g2(x, y) =
∑

i(=j

fij(x, y)

and pair correlation function

ρ2(x, y) =
∑

i(=j fij(x, y)
(∑

i fi(x)
)(∑

j fj(y)
) .

Example 2.12. Continuing Example 2.7, consider a Poisson cluster process
Y, formed from a Poisson process X of parent points with intensity α. The
clusters Zx for different x are independent processes.
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Suppose Zu has intensity function f(u | x) and second moment density
h(u, v | x). It is not hard to show, by first conditioning on X, that the second
moment density of Y is

g2(u, v) = β(u)β(v) + α

∫

Rd

h(u, v | x) dx,

where β(u) =
∫

Rd f(u | x) dx is the intensity of Y. The integral term arises
from pairs of points in Y that come from the same cluster Zx.

For example, in the Matérn cluster process, the second moment density of
a cluster Zx is (by a simple extension of Example 2.11) h(u, v | x) = µ2/(π2r4)
if u, v ∈ b(x, r), and 0 otherwise. We have

∫

Rd

1{u, v ∈ b(x, r)} dx =
∫

Rd

1{u ∈ b(x, r)}1{v ∈ b(x, r)} dx

=
∫

Rd

1{x ∈ b(u, r)}1{x ∈ b(v, r)} dx

= λ2(b(u, r) ∩ b(v, r)).

Hence the second moment density of the Matérn cluster process is

g2(u, v) = α2µ2 + α
µ2

π2r4
λ2(b(u, r) ∩ b(v, r)).

2.4 Second Moments for Stationary Processes

For a stationary point process in Rd, there is a ‘disintegration’ of the second
moment measure. Stationarity implies

E [N(A + v)N(B + v)] = E [N(A)N(B)]

for all v ∈ Rd. Thus ν2, ν[2] are invariant under simultaneous shifts

(x, y) 6→ (x + v, y + v).

See the left panel in Figure 25.
Let us transform the problem by mapping each pair of points (x, y) to the

pair (x, y−x). Thus the first element of the image is the first point x, and the
second element y− x is the vector from x to y. This transforms Rd×Rd onto
itself by Ψ(x, y) = (x, y − x). Under this transformation, the simultaneous
shift (x, y) 6→ (x + v, y + v) becomes a shift of the first coordinate

(s, t) 6→ (s + v, t).

See the right panel in Figure 25.
The image of ν[2] under Ψ is a measure µ on Rd which is invariant under

translations of the first coordinate
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Fig. 25. Disintegration of the second moment measure of a stationary point process.
Left: The second moment measure is invariant under shifts parallel to the diagonal
in Rd × Rd. Right: If we transform the problem by mapping (x, y) to (x, y − x), the
image of the second moment measure is invariant under shifts of the first coordinate.
This factorises as a product measure.

(s, t) 6→ (s + v, t)

for all v ∈ Rd. By Theorem 2.1 it follows that

µ = βλd ⊗K

where β is the intensity of the process X, and K is a measure on Rd called
the reduced second moment measure of X.

Retracing our steps and using Campbell’s Formula, we find that for an
arbitrary integrand f ,

E




∑

x∈X

∑

y∈X, y (=x

f(x, y)



 =
∫ ∫

f(x, y) ν[2](dx, dy)

=
∫ ∫

f(x, x + u) µ(dx, du)

= β

∫ ∫
f(x, x + u) K(du) dx.

Theorem 2.4. Let X be a stationary point process on Rd with intensity β.
Then there is a measure K on Rd such that, for a general integrand f ,

E




∑

x∈X

∑

y∈X, y (=x

f(x, y)



 = β

∫ ∫
f(x, x + u) K(du) dx. (10)

K is called the reduced second moment measure of X.

To understand the measure K, we notice that for A,B ⊂ Rd
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βλd(A)K(B) = µ(A×B)

=
∫ ∫

1{s ∈ A}1{t ∈ B}µ(s, t)

=
∫ ∫

1{x ∈ A}1{y − x ∈ B} ν[2](dx, dy)

= E




∑

x∈X

∑

y∈X, y (=x

1{x ∈ A}1{y − x ∈ B}





This may also be obtained directly from (10) by taking f(x, y) = 1{x ∈
A}1{y − x ∈ B}. Since βλd(A) = EN(A), we have

K(B) =
E
∑

x∈X∩A N((B + x) \ x)
EN(A)

(11)

The right hand side of (11) may be interpreted as the average, over all points
x of the process, of the number of other points y of the process such that
y − x ∈ B.

Example 2.13. For the uniform Poisson process,

ν[2] = β2 λd ⊗ λd

µ = β2 λd ⊗ λd

K = β λd

Example 2.14. Suppose X is a stationary process on Rd which has a second
moment density function g2. Then by comparing (9) with (10) we can see that
g2(x, y) depends only on y − x, say

g2(x, y) = g(y − x),

for some function g, and we can write

K(B) =
1
β

∫

B
g(u) du.

Example 2.15. The randomly translated square grid was introduced in Exam-
ple 2.3. This is a stationary process. Following through the derivation above,
we find that the reduced second moment measure K puts mass 1 at each
integer point (ns,ms) for all integers n,m, except that there is no atom at
(0, 0).

Intuitively this reflects the fact that, if we know there is a point of X at
the origin, then this determines the position of the entire grid of points, and
we know there will be a point of X at each location (ns,ms).

This point process does not have a second moment density g2.
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2.5 The K-function

Second moment properties are important in the statistical analysis of spa-
tial point pattern data, just as the sample variance is important in classical
statistics.

The reduced second moment measure K carries important information
about the dependence or interaction between different points of the process.
For practical data analysis, we need some simplification of the measure K.
Ripley [39] suggested the function

K(t) =
1
β
K(b(0, t)), t ≥ 0. (12)

See also Ornstein & Zernike [35].
Using (11) with B = b(0, t), we see that βK(t) is the expected number of

points y of the process that satisfy 0 < ||y − x|| ≤ t for a given point x of
the process. In other words, βK(t) is the expected number of points close to
a given point of the process, where ‘close’ means ‘within a distance t’.

Fig. 26. Concept of the K-function. The value βK(t) is the expected number of
other points within a circle of radius t centred on a typical point of the process.

Example 2.16. For a uniform Poisson process in Rd,

K(t) = κdt
d, t ≥ 0

where κd is the volume of the unit ball in Rd.

The factor 1/β in (12) normalises the K-function, making it independent
of the intensity β in the Poisson case.

Example 2.17. For a stationary point process in Rd which has a second mo-
ment density, Example 2.14 gives

K(t) =
1
β2

∫

b(0,t)
g2(0, x) dx =

∫

b(0,t)
ρ2(0, x) dx.
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Lemma 2.1. Suppose X is a stationary and isotropic point process in R2

which possesses a second moment density g2 and pair correlation function ρ.
Then g2(x, y) and ρ(x, y) depend only on ||y − x||, say

g2(x, y) = g(||x− y||) (13)
ρ2(x, y) = ρ(||x− y||) (14)

and the pair correlation can be recovered from the K-function by

ρ2(t) =
d
dtK(t)
2πt

(15)

Example 2.18. For the uniformly randomly translated grid (Examples 2.3 and
2.15) the K-function is K(t) = M(t/s) − 1, where M(r) is the number of
points of the integer grid Z2 inside the disc b(0, r). The function M is studied
closely in Prof. Baranyi’s lectures in this volume.

Lemma 2.2 (Invariance of K under thinning). Suppose X is a stationary
point process, and Y is obtained from X by random thinning (each point of X
is deleted or retained, independently of other points, with retention probability
p). Then the K-functions of X and Y are identical.

The proof is an exercise.

2.6 Estimation from Data

Assume again that we have observed data in the form of a finite configuration
of points x = {x1, . . . , xn} in a window W , where xi ∈ W and where n =
n(x) ≥ 0 is not fixed.

In order to estimate the K-function, consider the identity

K(t) =
E
∑

x∈X∩W N(b(x, t) \ x)
β EN(W )

. (16)

Again we have an edge effect problem in applying this identity. If we only
observe X∩W , the random variable in the numerator of (16) is not observable.
When x is a point close to the boundary of the window W , the disc b(x, t)
may extend outside W . Since the process X is not observed outside W , the
number of points of X in b(x, t) is not observable.

It is a common mistake to ignore this problem, and estimate the numerator
of (16) by

n∑

i=1

n(x ∩ b(xi, t) \ xi) =
n∑

i=1

∑

j (=i

1{||xi − xj || ≤ t}. (17)

The right hand side of (17) is proportional to the empirical distribution func-
tion of the distances sij = ||xi − xj || between all pairs of points. But this is a
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Fig. 27. Edge effect problem for estimation of the K function. If we can only observe
the points inside a window W (bold rectangle), then the number of points inside a
circle of radius t, centred on a point of the process inside W , is not observable if the
circle extends outside W .

biased estimator: the expectation of (17) is less than the numerator of (16),
because the observable quantity n(X∩W ∩ b(u, t)) is less than or equal to the
desired quantity n(X ∩ b(u, t)). This is a bias due to edge effects.

One simple strategy for eliminating the edge effect bias is the border
method, introduced in Section 1.10. When estimating K(t), we replace W
in equation (16) by the erosion

W−t = W 5 b(0, t) = {x ∈W : dist(x, ∂W ) ≥ t}

consisting of all points of W that are at least t units away from the boundary
∂W . Clearly, u ∈ W−t if and only if b(u, t) ⊂ W . Thus, n(x ∩ b(xi, t) \ xi) is
observable when xi ∈ W−t. Thus we estimate K(t) by

K̂(t) =

∑
x∈W−t

NX(b(x, t) \ x)

β̂n(x ∩W−t)

=
∑n

i=1

∑
j (=i 1{||xi − xj || ≤ t}
β̂n(x ∩W−t)

(18)

where β̂ is usually n(x)/λ2(W ). This is called the border method of edge
correction. More sophisticated edge corrections with better performance are
discussed in [42, 2].

2.7 Exercises

We again make use of the package spatstat described in section 1.11.
The function Kest computes estimates of the K function from spatial point

pattern data.

library(spatstat)
data(cells)
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Kc <- Kest(cells)
plot(Kc)
data(redwood)
plot(Kest(redwood))
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Fig. 28. Left: the cells point pattern dataset. Right: estimated K function plotted
against r, together with the theoretical K function for a Poisson process with the
same (estimated) intensity.
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Fig. 29. Left: the redwood point pattern dataset. Right: estimated K plotted against
r, together with the empty space function of a Poisson process.

The function Kmeasure computes an estimate of (a kernel-smoothed density
of) the reduced second moment measure K.

KMc <- Kmeasure(cells, sigma=0.03)
plot(KMc)
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Fig. 30. Kernel-smoothed density estimate of the second moment measure K of the
cells dataset. Lighter greys indicate higher estimated densities.

3 Conditioning

In the study of a point process we are often interested in properties relating
to a typical point of the process. This requires the calculation of conditional
probabilities of events given that there is a point of the process at a speci-
fied location. It leads to the concept of the Palm distribution of the point
process, and the related Campbell-Mecke formula [42]. These tools allow
us to define new characteristics of a point process, such as the nearest neigh-
bour distance distribution function G. A dual concept is the conditional
intensity which provides many new results about point processes. In the
computer exercises we compute statistical estimates of the function G from
spatial point pattern data sets.

3.1 Motivation

One simple question about a point process X is: what is the probability distri-
bution of the distance from a point of X to its nearest neighbour (the nearest
other point of X)?

Note that this is different from the empty space function F introduced in
Section 1.9, which is the distribution of the distance dist(u,X) from a fixed
location u to the nearest point of X. Here we are asking about the distance
from a point of the process X to the nearest other point of the process.

If x is known to be a point of X, then the nearest neighbour distance is
Rx = dist(x,X \ x), and we seek the ‘conditional probability’

P (Rx ≤ r | x ∈ X) .

The problem is that this is not a conditional probability in the elementary
sense, because the event {x ∈ X} typically has probability zero.
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Fig. 31. Concept of nearest neighbour distance.

For some basic examples of point processes, this question can be resolved
using classical methods.

Example 3.1. Consider the binomial process (Section 1.3)

X = {X1, . . . , Xn}

where X1, . . . , Xn are i.i.d. random points, uniformly distributed in W ⊂ R2.
For each i = 1, . . . , n the conditional probability

P (Rx ≤ r | Xi = x) = P (dist(x,X \ Xi) ≤ r | Xi = x)

is well-defined (using the classical definition of conditional probability) and
equal to

P (Rx ≤ r | Xi = x) = 1− P (Rx > r | Xi = x)
= 1− P(X′ ∩ b(x, r) = ∅)

where
X′ = X \ Xi

is a binomial process with n− 1 points. Thus

P (Rx ≤ r | Xi = x) = 1−
[
λ2(b(x, r) ∩W )

λ2(W )

]n−1

.

The same quantity is obtained for each i, as we might have expected given
the exchangeability of X1, . . . , Xn. Hence it seems reasonable to interpret this
to be the value of P (Rx ≤ r | x ∈ X).

A similar argument can be used for other point processes which contain a
finite number of points, almost surely.

For a stationary point process X, another argument must be used. It is
sufficient to consider x = 0, that is, to condition on the event that there is
a point of X at the origin 0. One simple way to define and calculate such
probabilities would be to condition on the event that there is a point of X in
a small neighbourhood U of the origin 0, and then take the limit as U shrinks
down to {0}.
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Example 3.2. Suppose X is a Poisson process in R2 with intensity β. For ε > 0,
let U = b(0, ε) and define R(ε) = dist(0,X \ U), the distance from 0 to the
nearest point of X outside U . Clearly, R(ε) > r iffX has no points in b(0, r)\U .
Since U and b(0, r) \ U are disjoint,

P
(
R(ε) > r | N(U) > 0

)
= P(R(ε) > r) = exp{−βπ(r2 − ε2)}.

As ε ↓ 0, this conditional probability converges to the limit exp{−βπr2}. Note
also that

P (N(U) = 1 | N(U) > 0) → 1 as ε ↓ 0

so that, for small ε, we may effectively assume there is at most one point in
U . Additionally, if X ∩ U = {x}, then

∣∣∣dist(x,X \ x)− dist(0,X \ U)
∣∣∣ ≤ ε

so we have some confidence in formally writing

P (R0 ≤ r | 0 ∈ X) = exp{−βπr2}.

3.2 Palm Distribution

The Palm distribution formalises the concept of conditioning on a point
of the process. It was developed by C. Palm (1907-1951) for the study of
telephone traffic [36].

Palm Probabilities

The Palm probability Px(A) of an event A at a location x is, intuitively
speaking, the conditional probability that the event A will occur, given x ∈ X:
that is, given that there is a point of the process X at the specified location
x.

An elegant way to define Px(A) is the following. Let (Ω,A, P ) be the
underlying probability space. Define the Campbell measure C on S ×Ω by

C(B ×A) = E [N(B)1A]

for all A ∈ A and B ∈ B(S), then by extension to A ⊗B (S). Here 1A is the
indicator random variable of the event A (equal to 1 if the event A occurs and
0 if not) and B(S) is the Borel σ-field of S. Notice that

C(B ×A) ≤ EN(B) = ν(B)

where ν is the intensity measure of X (assumed to exist and to be locally
finite).

For any fixed A, let µA(B) = C(B × A) for all B. Then µA is a measure,
and µA ≤ ν, so certainly µA << ν. By the Radon-Nikodým Theorem,
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µA(B) =
∫

B
fA(x) ν(dx)

where fA : S → R+ is measurable (and unique up to equality almost every-
where). We shall interpret fA(x) as the Palm probability Px(A).

Under conditions on (Ω,A), there exist regular conditional probabil-
ities Px(A) such that

• for all A, the function x 6→ Px(A) is a version of fA, i.e.
∫

B
Px(A) ν(dx) = C(B ×A) = E [N(B)1A]

• for almost all x, the map A 6→ Px(A) is a probability measure on (Ω,A).

Then Px is called the Palm probability measure associated with the point
process X at the location x. We write Ex for the expectation with respect to
Px.

Example 3.3 (Poisson process). Let X be a uniform Poisson process in Rd.
Consider the event

A = {N(K) = 0}

where K ⊂ Rd is compact. For any closed U disjoint from K we have, by
independence properties of the Poisson process,

C(U ×A) = E [N(U)1A] = E[N(U)]P(A) = ν(U)P(A).

It follows that Px(A) = P(A) for almost all x ∈ Rd \ K. On the other hand,
for U ⊆ K we have N(U) ≤ N(K) so that

C(U ×A) = E [N(U)1A] = 0

so that Px(A) = 0 for almost all x ∈ K.
Now holding x fixed and varying K, and taking the complementary proba-

bilities, we have Px(N(K) > 0) = P(N(K) > 0) if x (∈ K, and Px(N(K) > 0)
= 1 if x ∈ K. But this is the capacity functional of

X ∪ {x} ,

the Poisson process X augmented by a fixed point at the location x.
In other words, under the Palm distribution Px, the process behaves as if

it were a Poisson process superimposed with a fixed point at the location x.

Note that Px is a probability measure on the original space (Ω,A), giving a
probability Px(A) for any event A ∈ A, and not just for events defined by the
process X.
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Example 3.4 (Mixed Poisson process). Suppose Γ is a nonnegative real random
variable defined on Ω and that, given Γ = γ, the point process X is Poisson
with intensity γ. The intensity measure of this mixture process is

EN(B) = E [E[N(B) | Γ ]] = E[Γ ]λd(B).

Let A = {Γ ≤ γ} for some fixed γ ≥ 0. Then for B ⊂ Rd we have

C(B ×A) = E [N(B)1A]
= E (E [N(B)1A | Γ ])
= E [Γλd(B)1{Γ ≤ γ}]
= E [Γ1{Γ ≤ γ}]λd(B)

so that
Px(Γ ≤ γ) =

E[Γ1{{Γ ≤ γ}}]
E[Γ ]

.

Thus, the distribution of Γ under Px is the Γ -weighted counterpart of its
original distribution.

Palm Distribution of Point Process

Many writers consider only the Palm distribution of the point process X itself,
that is, the distribution Px on N defined by

Px(A) = Px(X ∈ A)

for A ∈ N . Note the distinction between Px, a point process distribution
in the sense of Definition 1.5, and Px, a probability measure on the original
probability space Ω. We sometimes denote the Palm distribution of X by Px

X.
When X is a homogeneous Poisson process, we have just shown in Exam-

ple 3.3 that the Palm distribution satisfies

Px = P ∗∆x

where P is the distribution of the original Poisson process, ∗ denotes convolu-
tion (superposition of two point processes), and ∆x is the distribution of the
point process consisting of a single point at x.

We sometimes write Xx for the process governed by the Palm distribution
Px, so that the last equation can be expressed as

Xx d=X ∪ {x}

where d= denotes equivalence in distribution. In fact, this property is charac-
teristic of Poisson processes.
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Theorem 3.1 (Slivnyak’s Theorem). Let X be a point process with locally
finite intensity measure ν. Suppose the distribution P = PX and the Palm
distribution Px = Px

X of X are related by

Px = P ∗∆x.

Then X is a Poisson process with intensity measure ν.

It is often convenient to remove the point x from consideration.

Definition 3.1. The reduced Palm distribution P!x of a point process X
is the distribution of X \ x under Px:

P!x(A) = Px(X \ x ∈ A)

for A ∈ N .

Thus Slivnyak’s Theorem states that X is a Poisson point process if and only
if P!x

X = PX.

Example 3.5 (Binomial process). Let Y(n) be the binomial process (Sec-
tion 1.3) consisting of n independent random points X1, . . . , Xn uniformly
distributed in a domain W . It is easy to show that the reduced Palm distrib-
ution of Y(n) is identical to the distribution of Y(n−1).

Example 3.6 (Palm distribution of mixed Poisson process). Let X be the
mixed Poisson process described in Example 3.4. Consider the event

A = {N(K) = 0}

where K ⊂ Rd is compact. Following the argument in Example 3.3 we find
that if x ∈ K then Px(A) = 0, while if x (∈ K, then

Px(A) =
E[Γ1{N(K) = 0}]

E[Γ ]

=
E[ΓP(N(K) = 0 | Γ )]

E[Γ ]

=
E[Γ exp(−Γλd(K))]

E[Γ ]
.

Hence, the capacity functional of X!x is the Γ -weighted mean of the capacity
functional of a Poisson process with intensity Γ . This is different from the
capacity functional of the original process X, which is the unweighted mean
T (K) = E [exp(−Γλd(K))].

The distribution P and reduced Palm distribution P!x of X satisfy, for all
events A ∈ N ,
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P(A) = E[πΓ (A)] (19)

P!x(A) =
E[Γ πΓ (A)]

E[Γ ]
(20)

where πγ denotes the distribution of the uniform Poisson process with inten-
sity γ.

To put it another way, let F (t) = P(Γ ≤ t) be the cumulative distribution
function of the random intensity of the original process. Define the weighted
c.d.f.

F1(t) =
1

E[Γ ]

∫ t

0
s F (ds).

Then X!x is a mixed Poisson process whose random intensity has the weighted
c.d.f. F1.

An intuitive explanation for the last example is the following. Points of the
process are generated with greater intensity when Γ is larger. Hence, by Bayes’
Theorem, given that a point was observed to occur, the posterior probability
distribution of Γ favours larger values of Γ .

Theorem 3.2 (Campbell-Mecke formula). For any function Y : S×Ω 6→
R+ that is integrable with respect to the Campbell measure,

E
∑

x∈X

Y (x) =
∫

S
Ex[Y (x)] ν(dx) (21)

In particular, if Y (x) = f(x,X), that is, Y (x, ω) = f(x,X(ω)), we get

E
[
∑

x∈X

f(x,X)

]
=
∫

S
Ex[f(x,X)] ν(dx). (22)

Example 3.7 (dependent thinning). We shall determine the intensity of Ma-
térn’s Model I, which was described in Section 1.7. Let X denote the original
Poisson process, of intensity β in R2, and Y the thinned process obtained by
deleting any point x ∈ X such that dist(x,X \ x) ≤ r, that is, deleting any
point which has a neighbour closer than r units. For any B ⊂ Rd let

f(x,X) = 1{x ∈ B}1{dist(x,X \ x) ≤ r}
= 1{x ∈ B}1{x ∈ Y}.

Since X is a Poisson process we have

Px(dist(x,X \ x) ≤ r) = P(dist(x,X) ≤ r) = 1− exp{−βπr2}.

Hence
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E [n(Y ∩B)] = E
∑

x∈X

f(x,X)

= β

∫

R2
Ex[f(x,X)] dx

= βλ2(B)(1− exp{−βπr2}).

It follows that Y has intensity β(1− exp{−βπr2}).

Example 3.8 (Boundary length of Boolean model). Consider the union

Z =
⋃

x∈X

b(x, r)

where X is a homogeneous Poisson process of intensity β in R2, and r > 0 is
fixed. We want to find

E [length(W ∩ ∂Z)]

where ∂ denotes boundary. Write

length(W ∩ ∂Z) =
∑

x∈X

Y (x)

where
Y (x) = length(W ∩ ∂b(x, r) \ Z−x)

and
Z−x =

⋃

y∈X\{x}

b(x, r).

Under the Palm probability measure Px, this random set Z−x is a Boolean
model with the same distribution as Z. Hence

Ex[Y (x)] = (1− p) length(W ∩ ∂b(x, r))

where p = 1 − exp(−βπr2) is the coverage probability of Z. Hence by
Campbell-Mecke

E [length(W ∩ ∂Z)] =
∫

R2
(1− p) length(W ∩ ∂b(x, r))β dx

= 2πβr exp(−βπr2)λ2(W ).

3.3 Palm Distribution for Stationary Processes

In the case of a stationary point process, the Palm distributions Px at different
locations x are equivalent under translation.



50 Adrian Baddeley

Lemma 3.1. If X is a stationary point process in Rd, then

Xx d=X0 + x

where Xx again denotes a process governed by the Palm probability measure
Px.

More formally, let Tx denote the effect of translation by a vector x ∈ Rd on a
counting measure N ,

TxN(B) = N(B − x), B ⊂ Rd

and correspondingly for events E ∈ N

TxE = {N ∈ N : TxN ∈ E}

and for any point process distribution Q define TxQ by

TxQ(E) = Q(TxE), E ∈ N .

Then Lemma 3.1 states that

Px
X = Tx P0

X (23)

for any stationary point process X.

Proof. Apply the Campbell-Mecke formula to functions of the form

f(x,X) = 1{x ∈ B}1{X− x ∈ A}

where A ∈ N is an event, B ⊂ Rd, and X − x = X + (−x) is the result of
shifting X by the vector −x. This yields

E
[
∑

x∈X∩B

1{X− x ∈ A}
]

= β

∫

B
Px(X− x ∈ A) dx.

Since X is stationary, X has the same distribution as X + v for any vector v,
so

E
[
∑

x∈X∩B

1{X− x ∈ A}
]

= E




∑

x∈(X+v)∩B

1{(X + v)− x ∈ A}





= E




∑

x∈X∩T−vB

1{X− x ∈ A}



 .

Thus
β

∫

B
Px(X− x ∈ A) dx = β

∫

T−vB
Px(X− x ∈ A) dx
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which implies that for all B
∫

B
Px(X− x ∈ A) dx = c λ2(B)

for some constant c, and hence that Px(X− x ∈ A) is constant. This proves
(23). 12

One way to interpret this result is to construct a marked point process Y on
Rd with marks in N by attaching to each point x ∈ X the mark X− x. That
is, the mark attached to the point x is a copy of the entire realisation of the
point process, translated so that x is shifted to the origin. The result shows
that Y is a stationary marked point process. Hence the intensity measure of
Y factorises,

ν(B ×A) = β λd(B)Q(A)

for B ⊂ Rd, A ∈ N where Q is the mark distribution. Clearly Q can
be interpreted as the Palm distribution given there is a point at 0. That is,
P0 = Q, and Px = T−xQ.

This gives us a direct interpretation of the Palm distribution P0 (but not
the Palm probability measure P0) for a stationary point process in Rd. We
have

E
[
∑

x∈B

1{X− x ∈ A}
]

= β λd(B)P0(A) (24)

for B ⊂ Rd, A ∈ N . Thus

P0(A) =
E
[∑

x∈B 1{X− x ∈ A}
]

EN(B)
(25)

for all B ⊂ Rd such that 0 < λd(B) < ∞. On the right side of (25), the
denominator is the expected number of terms in the numerator, so we can
interpret P0(A) as the ‘average’ fraction of points x satisfying X− x ∈ A.

3.4 Nearest Neighbour Function

In Definition 1.9 we defined the empty space function F of a stationary point
process. The function F can be estimated from data, and provides a sim-
ple summary of the process. It can be useful in statistical analysis of point
patterns.

A related concept is the nearest neighbour distance distribution.

Definition 3.2. Let X be a stationary point process in Rd. The nearest
neighbour function G is the cumulative distribution function of the dis-
tance

R′ = dist(x,X \ x)

from a typical point x ∈ X to the nearest other point of X. That is
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G(r) = Px(dist(x,X \ x) ≤ r)
= Px(N(b(x, r) \ x) > 0).

By stationarity, this does not depend on x.

Example 3.9. For a stationary Poisson process in Rd, since Xx ≡ X∪ {x}, we
have

G(r) = Px(dist(x,X \ x) ≤ r)
= P(dist(x,X) ≤ r)
= 1− exp(−βκdr

d).

In this case G(r) ≡ F (r).

Estimation of the function G from observed point pattern data is hampered by
edge effects, similar to those affecting the estimation of F (see Section 1.10).
The basic identity for estimation is (25), or more specifically

G(r) =
E
[∑

x∈B 1{dist(x,X \ x) ≤ r}
]

EN(B)
. (26)

The simplest strategy for avoiding edge effects is an adaptation of the border
method. When estimating G(r) we set B = W−r in equation (26) so that
the quantities on the right hand side of (26) are observable. This yields an
estimator

Ĝb(r) =

∑
x∈W−r

1{dist(x,x \ x) ≤ r}
n(x ∩W−r)

. (27)

If we write for each xi ∈ x

di = dist(xi,x \ xi)
bi = dist(xi, ∂W )

so that di is the observed nearest-neighbour distance and bi is the distance to
the boundary of the observation window, then the estimator can be rewritten

Ĝb(r) =
∑

i 1{di ≤ r, bi ≥ r}∑
i 1{bi ≥ r} . (28)

Further discussion of edge corrections can be found in [42, 2].

3.5 Conditional Intensity

Return for a moment to the heuristic definition of the Palm probability Px(A)
as the limit of P (A | N(U) > 0) as U ↓ {x}, where U is an open neighbourhood
of x in Rd, and A is an event in A. Applying Bayes’ Theorem
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P (N(U) > 0 | A) =
P(N(U) > 0)

P(A)
P (A | N(U) > 0)

so that, as U ↓ {x},

P (N(U) > 0 | A)
P(N(U) > 0)

→ Px(A)
P(A)

.

Suppose X has an intensity function β(u), u ∈ Rd which is continuous at x.
Then asymptotically

P(N(U) > 0) ∼ E[N(U)] =
∫

U
β(u) du ∼ β(x)λd(U)

so that
P (N(U) > 0 | A)

λd(U)
→ β(x)

Px(A)
P(A)

. (29)

Since we can also write

P(N(U) > 0)
λd(U)

→ β(x),

then (29) can be interpreted as a conditional analogue of the intensity β(x)
given the event A.

This motivates the following definitions.

Definition 3.3. Let X be a point process on a space S, The reduced Camp-
bell measure of X is the measure C ! on S × N such that

C ![B ×A] = E
[
∑

x∈X

1{x ∈ B}1{X \ x ∈ A}
]

for B ⊂ Rd and A ∈ N .

Definition 3.4. Let X be a point process on Rd, and suppose its reduced
Campbell measure C ! is absolutely continuous with respect to λd ⊗ P (where
P is the distribution of X).

Then the Radon-Nikodým derivative β∗ : Rd×N → R+ of C ! with respect
to λd ⊗P is called the conditional intensity of X. It is defined to satisfy

C ![B ×A] =
∫

B
E [β∗(u,X)1{X ∈ A}] du (30)

for B ⊂ Rd and A ∈ N .

If X has a conditional intensity then, by extension of the last equation, for
any integrable g : Rd × N → R+,
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E
[
∑

x∈X

g(x,X \ x)

]
=
∫

Rd

E [β∗(x,X)g(x,X)] dx. (31)

If X has an intensity function β(u), u ∈ Rd, then the Campbell-Mecke formula
gives

E
[
∑

x∈X

g(x,X \ x)

]
=
∫

Rd

E!x[g(x,X)]β(x) dx (32)

writing E!x for the expectation with respect to P!x. Comparing the right sides
of (31) and (32) shows that, for almost all x ∈ Rd,

E!x[g(x,X)] = E
[
β∗(x,X)
β(x)

g(x,X)
]

. (33)

Thus, β∗(x,X)/β(x) is the Radon-Nikodým density of P!x with respect to P.
In particular taking g ≡ 1

β(x) = E[β∗(x,X)]. (34)

Example 3.10. If X is a Poisson process on Rd with intensity function β(x),
then we have P!x = P for all x, so β∗(x,X)/β(x) is identically equal to 1,
and the conditional intensity is β∗(x,X) = β(x).

Our heuristic argument says that

β∗(x,X) dx = P (N( dx) > 0 | X \ x) ;

that is, roughly speaking, β∗(x,X) dx is the conditional probability that there
will be a point of X in an infinitesimal neighbourhood of x, given the location
of all points of X outside this neighbourhood.

Example 3.11. The binomial process Y(n) consists of n independent random
points, uniformly distributed in a domain W . We saw above that the reduced
Palm distribution of Y(n) is identical to the distribution of Y(n−1). In this
case, P!x and P are mutually singular (since, for example, the event that
there are exactly n points in the process has probability 1 under P and has
probability 0 under P!x). Hence, this process does not have a conditional
intensity.

Example 3.12 (Mixture of binomial processes). Suppose X consists of a ran-
dom number N of points, where P(N = n) = p(n), and that given N = n,
the points are independent and uniformly distributed in a domain W . The
intensity of X is β(u) = E[N ]/λd(W ) for u ∈ W , and β(u) = 0 for u (∈ W . If
Qn denotes the distribution of the binomial process with n points, then the
distribution of X is

P(A) =
∞∑

n=0

p(n)Qn(A).
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It is fairly easy to show that the distribution of X!x is

P!x(A) =
1

E[N ]

∞∑

n=0

np(n)Qn−1(A).

We saw above that Qn and Qm are mutually singular for n (= m. Assume that
p(n) > 0 implies p(n− 1) > 0 for any n. Then we must have

β∗(x,X)
β(x)

=
dP!x

dP
(X) =

r(n(X))
E[N ]

where
r(n) =

(n + 1)p(n + 1)
p(n)

.

Hence
β∗(x,X) =

r(n(X))
λd(W )

.

For example, if X is a uniform Poisson process with intensity α in W , then
N ∼ Poisson(αλd(W )), and we get r(n) = αλd(W ), yielding β∗(x,X) = α.

Example 3.13. The randomly translated grid in R2 was studied in Exam-
ple 2.3. Intuitively, if we know that there is a point of the grid at the location
x, this determines the position of the entire grid. The Palm distribution Px

for this process is completely deterministic: with probability one, Xx consists
of points at the locations x+(ks,ms) for all integers k,m. This can be proved
using (25).

It follows that Px is not absolutely continuous with respect to P, so this
process does not possess a conditional intensity.

3.6 J-function

An interesting combination of the empty space function F and the nearest
neighbour function G is the following [47].

Definition 3.5. Let X be a stationary point process in Rd. The J-function
of X is

J(r) =
1−G(r)
1− F (r)

for all r ≥ 0 such that F (r) < 1.

For a uniform Poisson process, we know that F (r) ≡ G(r) and hence J(r) ≡ 1.
The J-function of a stationary process can be written explicitly in terms of
the conditional intensity:
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J(r) =
P0(dist(0,X \ 0) > r)

P(dist(0,X) > r)

=
P!0(dist(0,X) > r)
P(dist(0,X) > r)

=
E
[
β∗(0,X)
β(0) 1{dist(0,X) > r}

]

P(dist(0,X) > r)

= E
[
β∗(0,X)
β(0)

| dist(0,X) > r

]
.

This representation can often be evaluated, while F and G often cannot be
evaluated explicitly.

The J-function has good properties with respect to many operations on
point processes. For example, suppose X and Y are independent stationary
point processes, with intensities αX, αY and J-functions JX, JY. Then the
superposition X ∪Y has J-function

JX∪Y(r) =
αX

αX + αY
JX(r) +

αY

αX + αY
JY(r).

3.7 Exercises
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Fig. 32. Estimates of the nearest neighbour function G (Left) and the J-function
(Right) for the cells dataset. The functions are plotted (as solid lines) against
the distance argument r, together with the theoretical expected value for a Poisson
process (dotted lines).

Again we use the package spatstat described in Sections 1.11 and 2.7. The
commands Gest and Jest compute estimates of the nearest neighbour func-
tion G and the J-function, respectively, from spatial point pattern data.

For the cells data introduced in Section 1.11, Figure 32 shows an analysis
using the G and J functions, produced by the following code.
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library(spatstat)
data(cells)
G <- Gest(cells)
plot(G)
plot(Jest(cells))

Inspection of the plot of G(r) shows that the cells data have strong inhibition
between points: no point has a nearest neighbour closer than 0.08 units.

4 Modelling and Statistical Inference

This lecture is concerned with statistical models for point pattern data. Point
processes in a bounded region of space are considered: in this case it is possible
to construct many point process models by writing down their probability
densities. We then describe techniques for fitting such models to data [16].

Fig. 33. Examples of point pattern data. Left: Locations of 126 pine saplings in
a Finnish forest (kindly supplied by S. Kellomaki and A. Penttinen). Right: Home
address locations of 62 cases of childhood leukaemia and lymphoma in North Hum-
berside, England (from [14]).

4.1 Motivation

Suppose we have observed a point pattern dataset

x = {x1, . . . , xn} , n ≥ 0, xi ∈W

consisting of a finite number of points in a bounded window W ⊂ Rd where
typically d = 2, 3 or 4.
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After an initial exploratory phase of data analysis, in which we use tools
such as the F , G and K functions to gain qualitative information about the
spatial pattern, we may feel confident enough to proceed to a more formal style
of statistical analysis. This involves formulating a statistical model, fitting the
model to the data, and deciding whether the model is a good fit to the data.

A simple example of a statistical model is the uniform Poisson process with
unknown intensity β. This often serves as a reference model for ‘complete
spatial randomness’ [16], since the points of a uniform Poisson process are
stochastically independent of each other, and are uniformly distributed over
the region of observation. Alternative models may describe various kinds of
departures from a completely random pattern.

4.2 Parametric Modelling and Inference

In this lecture we will adopt the approach of parametric statistical modelling.
Our statistical model will be a spatial point process X. Our model will com-
pletely specify the probability distribution of X, except for the unknown value
of a parameter θ. (An example would be the uniform Poisson point process
with unknown intensity β). The parameter θ ranges over some set Θ of valid
parameter values, typically a subset of Rk for some k ≥ 1. Write Pθ for the
probability distribution, and Eθ for the expectation operator, under the model.
Then we shall estimate θ from the data x giving an estimate θ̂ = θ̂(x).

Three generic methods for parameter estimation are surveyed below.

Method of Moments

In the Method of Moments, we choose a statistic T (x), and take our estimate
θ̂ to be the solution of

Eθ[T (X)] = T (x). (35)

That is, we choose θ so that the theoretical expected value Eθ[T (X)] matches
the observed value T (x).

Example 4.1. Suppose the model is the uniform Poisson process with intensity
β. This can be fitted by the method of moments. Let the statistic T be T (x) =
n(x), the number of points in x. Then we have Eβ [T (X)] = β λd(W ). The
solution to (35) is

β̂ = n(x)/λd(W ).

The method of moments works well when we have an analytic expression for
Eθ[T (X)] as a function of θ, when the equation (35) is guaranteed to have a
solution, and when the solution is always unique.

A disadvantage of the method of moments in applications to spatial sta-
tistics is that the moments of interesting point processes are often difficult to
calculate. Usually we have to resort to simulation. That is, for each possible
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value of θ, we generate a large number of simulated realisations x(1), . . . ,x(N)

from the model with parameter θ, and estimate Eθ[T (X)] by the sample mean
T = 1

N

∑
i T (x(i)). Since the simulations have to be performed again for each

new value of θ under consideration, this computation can be expensive.
As we consider more complex models involving several parameters, the

statistic T must also become more complex. If θ is a k-dimensional vector,
then the values of T (x) must also be k-dimensional (or higher) in order that
the solution of (35) may be unique.

Minimum Contrast Estimation

In the Method of Minimum Contrast, our estimate is

θ̂ = argminθ D(T (x), Eθ[T (X)]). (36)

where T (x) is a chosen statistic, as above, and D is a metric. That is, θ̂ is the
parameter value giving an expectation Eθ[T (X)] that is closest (as measured
by D) to the observed value T (x). This usually avoids difficulties arising when
the method of moments estimating equation (35) does not have a solution.
It also allows us to make use of a statistic T (x) which takes values in an
arbitrary space.

Diggle & Gratton [18] proposed the method of minimum contrast in com-
bination with the K-function. Suppose that the K-function for the model is
known analytically as a function of θ, say Kθ(r). Given point pattern data
x, we may first estimate the K-function using the non-parametric estimator
K̂(t) described in Section 2.6. Then we choose θ to minimise

∫ b

a
|Kθ(r)− K̂(r)|p dr

where 0 ≤ a < b and p > 0 are chosen values. This is the minimum contrast
method based on T (x) = (K̂(r), a ≤ r ≤ b), a function-valued statistic, and
the metric D is an Lp distance.

Example 4.2. The Thomas process is a cluster process (Section 1.7) formed
by taking a Poisson process of ‘parents’ with intensity α, and replacing each
parent x by several offspring, where the number of offspring is Poisson with
mean µ, and the offspring of a parent x are i.i.d. random points yi = x +
ei where the displacement vector ei has coordinates which are independent
Normal N(0, σ2) random variables. The K-function for this process is known
analytically:

K(r) = πr2 +
1
α

(
1− exp

(
− r2

4σ2

))
.

The intensity of the process is β = αµ. Diggle & Gratton [18] proposed fitting
this model by the method of minimum contrast. See also [16]. Given point
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pattern data x in a window W , we first estimate the K-function using the
non-parametric estimator K̂(t) described in Section 2.6. The intensity β = αµ

is also estimated by the method of moments, β̂ = n(x)/λ2(W ). Then we find
the values (α, µ, r) which minimise

∫ b

a
|Kθ(t)− K̂(t)|p dt

subject to the constraint αµ = n(x)/λ2(W ).

However, there are very few point processes for which we have analytic ex-
pressions for Kθ. Usually one would estimate Kθ by simulation.

It is well known that the K function does not completely characterise a
stationary point process. A counterexample is given in [5]. Thus, if we are not
careful, our model may be unidentifiable from the K-function, in the sense
that there are two distinct parameter values θ1, θ2 such that Kθ1 ≡ Kθ2 .

The method of minimum contrast avoids some of the problems of the
method of moments. If D has certain convexity properties, then the minimi-
sation (36) has a unique solution. However the statistical properties of the
solution are not well understood in general. Additionally, the numerical be-
haviour of the algorithm used to find the minimum in (36) may also cause
difficulties.

Maximum Likelihood

In the Method of Maximum Likelihood, first articulated by R.A. Fisher, we
define the likelihood function

L(θ;x) =
dPθ

dν
(x)

where ν is some reference measure. After observing data x, we treat L as a
function of θ only, and choose θ̂ to maximise the likelihood:

θ̂ = argmaxθL(θ;x)

is the value of θ for which the likelihood is maximised. There may be difficulties
with non-unique maxima.

Maximum likelihood has some good statistical properties, including as-
ymptotic (large-sample) normality and optimality. Hence a major goal in spatial
statistics is to apply maximum likelihood methods.

The likelihood is a probability density. Hence we need to define/construct
point process distributions in terms of their probability densities.
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4.3 Finite Point Processes

A point process X on S with N(S) <∞ a.s. is called a finite point process.
The binomial process (Section 1.3) is a simple example in which the total
number of points is fixed. In general, the total number of points N(S) is a
random variable. The distribution of the process can be specified by giving
the probability distribution of N(S), and given N(S) = n, the conditional
joint distribution of the n points.

Example 4.3. Consider a Poisson process with intensity measure µ that is
totally finite (µ(S) < ∞). This is equivalent to choosing a random number
K ∼ Poisson(µ(S)), then given K = k, generating k i.i.d. random points with
common distribution Q(B) = µ(B)/µ(S).

Realisations of a finite point process X belong to the space

Nf = {N ∈ N : N(S) < ∞}

of totally finite, simple, counting measures on S. This may be decomposed
into subspaces according to the total number of points:

Nf = N0 ∪ N1 ∪ N2 ∪ . . .

where for each k = 0, 1, 2, . . .

Nk = {N ∈ N : N(S) = k}

is the set of all counting measures with total mass k, that is, effectively the
set of all configurations of k points. This can be represented more explicitly
by introducing the space of ordered k-tuples

S!k = {(x1, . . . , xk) : xi ∈ S, xi (= xj for all i (= j} .

Define a mapping Ik : S!k → Nk by

Ik(x1, . . . , xk) = δx1 + . . . + δxk

This gives
Nk ≡ S!k/ ∼

where ∼ is the equivalence relation under permutation, i.e.

(x1, . . . , xk) ∼ (y1, . . . , yk) ⇔ {x1, . . . , xk} = {y1, . . . , yk}

Using this representation we can give explicit formulae for point process dis-
tributions.
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Example 4.4 (binomial process). Let X1, . . . , Xn be i.i.d. random points uni-
formly distributed in W . Set X = In(X1, . . . , Xn). The distribution of X is
the probability measure PX on N defined by

PX(A) = P(In(X1, . . . , Xn) ∈ A)

=
1

|W |n

∫

W
. . .

∫

W
1{In(x1, . . . , xn) ∈ A} dx1 . . . dxn

Example 4.5 (finite Poisson process). Let X be the Poisson process on S with
totally finite intensity measure µ. We know that N(S) ∼ Poisson(µ(S)) and
that, given N(S) = n, the distribution of X is that of a binomial process of n
points i.i.d. with common distribution Q(B) = µ(B)/µ(S). Thus

PX(A) =
n∑

n=0

P(N(S) = n)P(In(X1, . . . , Xn) ∈ A)

=
∞∑

n=0

e−µ(S) µ(S)n

n!

∫

S
. . .

∫

S
1{In(x1, . . . , xn) ∈ A} Q(dx1) . . . Q(dxn)

= e−µ(S)
∞∑

n=0

1
n!

∫

S
. . .

∫

S
1{In(x1, . . . , xn) ∈ A} µ(dx1) . . . µ(dxn).(37)

The term for n = 0 in the sum should be interpreted as 1{0 ∈ A} (where 0 is
the zero measure, corresponding to an empty configuration.)

4.4 Point Process Densities

Henceforth we fix a standard measure µ on S. Typically µ is Lebesgue measure
on a bounded set W in Rd. Let πµ denote the distribution of the Poisson
process with intensity measure µ.

Definition 4.1. Let f : Nf → R+ be a measurable function satisfying∫
N f(x) πµ(dx) = 1. Define

P(A) =
∫

A
f(x) πµ(dx).

for any event A ∈ N . Then P is a point process distribution in the sense of
Definition 1.5. The function f is said to be the probability density of the
point process with distribution P.

Lemma 4.1. For a point process X with probability density f we have

P(X ∈ A) = e−µ(S)
∞∑

n=0

1
n!

∫

S
. . .

∫

S
1{In(x1, . . . , xn) ∈ A} (38)

f(In(x1, . . . , xn)) µ(dx1) . . . µ(dxn)
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for any event A ∈ N , and

E[g(X)] = e−µ(S)
∞∑

n=0

1
n!

∫

S
. . .

∫

S
g(In(x1, . . . , xn)) (39)

f(In(x1, . . . , xn)) µ(dx1) . . . µ(dxn)

for any integrable function g : N → R+.
We can also rewrite these identities as

P(X ∈ A) = E [f(Π)1A(Π)] (40)
E[g(X)] = E[g(Π)f(Π)] (41)

where Π is the Poisson process with intensity measure µ.

For some elementary point processes, it is possible to determine the probability
density directly.

Example 4.6 (uniform Poisson process). Let β > 0. Set

f(x) = αβn(x)

where α is a normalising constant and n(x) = x(S) =number of points in x.
Then

P(A) = αe−µ(S)
∞∑

n=0

1
n!

∫

S
. . .

∫

S
1{In(x1, . . . , xn) ∈ A}βn µ(dx1) . . . µ(dxn).

But this is the distribution of the Poisson process with intensity β. The nor-
malising constant must be α = e(1−β)µ(S). Thus, the uniform Poisson process
with intensity β has probability density

f(x) = βn(x)e(1−β)µ(S). (42)

Example 4.7 (Hard core process). Fix r > 0. Let

Hn =
{
(x1, . . . , xn) ∈ S!n : ||xi − xj || ≥ r for all i (= j

}

and

H =
∞⋃

n=0

In(Hn).

Thus H is the subset of N consisting of all point patterns x with the property
that every pair of distinct points in x is at least r units apart. Now define the
probability density

f(x) = α1{x ∈ H}

where α is the normalising constant. Then we have, for any event A ∈ N ,
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P(A) = E [f(Π)1{Π ∈ A}]
= αE [1{Π ∈ H}1{Π ∈ A}]
= αP(Π ∈ H ∩A).

It follows that
α = 1/P(Π ∈ H)

and P is the conditional distribution of the Poisson process Π given that
Π ∈ H. In other words, the process X with probability density f is equivalent
to a Poisson process conditioned on the event that there are no pairs of points
closer than r units apart.

Fig. 34. Realisation of the hard core process with β = 200 and r = 0.07 in the unit
square.

Figure 34 shows a realisation of the hard core process with β = 200 and
r = 0.07 in the unit square. One simple way to generate such a picture is by
the rejection method: we generate a sequence of realisations of the uniform
Poisson process with intensity 200, and plot the first realisation which satisfies
the constraint H. More efficient simulation methods are described in [33, 46].

4.5 Conditional Intensity

Consider a finite point process X in a compact set W ⊂ Rd. Recall that the
conditional intensity β∗(u,X), if it exists, satisfies

E
∑

x∈X

g(x,X \ x) =
∫

Rd

E [β∗(u,X)g(u,X)] du (43)
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for any integrable g.
Now suppose X has probability density f(x) (with respect to the uniform

Poisson process Π with intensity 1 on W ). Then the expectation of any inte-
grable function h(X) may be written in the form (39) or (41). Applying this
to both sides of (43) above, we get

E
[
f(Π)

∑

x∈Π
g(x,Π \ x)

]
=
∫

Rd

E [β∗(u,Π)f(Π)g(u,Π)] du. (44)

If we write
h(x,X) = f(X ∪ {x})g(x,X),

then the left side of (44) can be rewritten

E
[
f(Π)

∑

x∈Π
g(x,Π \ x)

]
= E

[
∑

x∈Π
h(x,Π \ x)

]

=
∫

W
E[h(u,X)] du,

where the last line is obtained by applying equation (43) to the process Π,
since the conditional intensity of Π is identically equal to 1 on W . Thus we
get

∫

Rd

E [β∗(u,Π)f(Π)g(u,Π)] du =
∫

W
E [f(Π ∪ {u})g(u,Π)] du

for all integrable functions g. It follows that

β∗(u,Π)f(Π) = f(Π ∪ u)

almost surely, for almost all u ∈ W . Thus we have obtained the following
result.

Theorem 4.1. Let f be the probability density of a finite point process X in
a bounded region W of Rd. Assume that

f(x) > 0 ⇒ f(y) > 0 for all y ⊂ x.

Then the conditional intensity of X exists and equals

β∗(u,x) =
f(x ∪ u)

f(x)
(45)

almost everywhere.

Example 4.8 (Uniform Poisson). The uniform Poisson process on W with in-
tensity β has density

f(x) = αβn(x)
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where α is a certain normalising constant. Applying (45) we get

β∗(u,x) = β

for u ∈W .

Example 4.9 (Hard core process). The probability density of the hard core
process (Example 4.7)

f(x) = α1{x ∈ H}

yields
λ(u,x) = 1{x ∪ u ∈ H}.

Lemma 4.2. Let X be a finite point process in a bounded region W in Rd.
Suppose that X has a probability density f and a conditional intensity β∗.
Then f is completely determined by β∗.

Proof. We may invert the relationship (45) by starting with the empty con-
figuration ∅ and adding one point at a time:

f({x1, . . . , xn}) = f(∅)f({x1})
f(∅)

f({x1, x2})
f({x1})

. . .
f({x1, . . . , xn})

f({x1, . . . , xn−1})
= f(∅)β∗(x1, ∅)β∗(x2, {x1}) . . . β∗(xn, {x1, . . . , xn−1}).

If the values of β∗ are known, then this determines f up to a constant f(∅),
which is then determined by the normalisation of f . 12

It is often convenient to formulate a point process model in terms of its condi-
tional intensity β∗(u,x), rather than its probability density f(x). The condi-
tional intensity has a natural interpretation (in terms of conditional probabil-
ity) which may be easier to understand than the density. Using the conditional
intensity also eliminates the normalising constant needed for the probability
density.

However, we are not free to choose the functional form of β∗(u,x) at will.
It must satisfy certain consistency relations. The next section describes a large
class of models which turns out to characterise the most general functional
form of β∗(u,x).

4.6 Finite Gibbs Models

Definition 4.2. A finite Gibbs process is a finite point process X with
probability density f(x) of the form

f(x) = exp(V0 +
∑

x∈x

V1(x) +
∑

{x,y}⊂x

V2(x, y) + . . .) (46)

where Vk : Nk → R ∪ {−∞} is called the potential of order k.
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Gibbs models arise in statistical physics, where log f(x) may be interpreted
as the potential energy of the configuration x. The term −V1(u) can be
interpreted as the energy required to create a single point at a location u. The
term −V2(u, v) can be interpreted as the energy required to overcome a force
between the points u and v.

Example 4.10 (Hard core process). Give parameters β, r > 0, define V1(u) =
log β and

V2(u, v) =
{

0 if ||u− v|| > r
−∞ if ||u− v|| ≤ r

and Vk ≡ 0 for all k ≥ 3. Then
∑

{x,y}⊂x V2(x, y) is equal to zero if all pairs
of points in x are at least r units apart, and otherwise this sum is equal to
−∞. Taking exp(−∞) = 0, we find that (46) is

f(x) = αβn(x)1{x ∈ H}

where H is the hard core constraint set defined in Example 4.7, and α =
exp(V0) is a normalising constant. This is the probability density of the hard
core process.

Theorem 4.2. Let f be the probability density of a finite point process X in
a bounded region W in Rd. Suppose that

f(x) > 0 ⇒ f(y) > 0 for all y ⊂ x. (47)

Then f can be expressed in the Gibbs form (46).

Proof. This is a consequence of the Möbius inversion formula (the ‘inclusion-
exclusion principle’). The functions Vk can be obtained explicitly as

V0 = log f(∅)
V1(u) = log f({u})− log f(∅)

V2(u, v) = log f({u, v})− log f({u})− log f({v}) + log f(∅)

and in general
Vk(x) =

∑

y⊆x

(−1)n(x)−n(y) log f(y).

Then equation (46) can be verified by induction on n(x). 12

Any process satisfying (47) also has a conditional intensity, by Theorem 4.1.
The corresponding conditional intensity is

β∗(u,x) = exp



V1(u) +
∑

x∈X

V2(u, x) +
∑

{x,y}⊂X

V3(u, x, y) + . . .



 (48)

Hence, this is the most general form of a conditional intensity:
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Theorem 4.3. Let X be a finite point process in a bounded region W of Rd.
Assume that X has a probability density f satisfying (47).

A function β∗(u,x) is the conditional intensity of X if and only if it can
be expressed in the form (48).

Example 4.11 (Strauss process). For parameters β > 0, 0 ≤ γ ≤ 1 and r > 0,
suppose

V1(u) = log β
V2(u, v) = (log γ) 1{||u− v|| ≤ r}.

Then we have
β∗(u,x) = βγt(u,x)

where
t(u,x) =

∑

x∈x

1{||u− x|| ≤ r}

is the number of points of x which are close to u. Also

f(x) = αβn(x)γs(x)

where
s(x) =

∑

x,y∈x

1{||x− y|| ≤ r}

is the number of pairs of close points in x. The normalising constant α is not
available in closed form.

When γ = 1, this reduces to the Poisson process with intensity β. When
γ = 0, we have

β∗(u,x) = 1{||u− x|| > r for all x ∈ x}

and
f(x) = αβn(x)1{x ∈ H}

so we get the hard core process.
For 0 < γ < 1 the Strauss process has ‘soft inhibition’ between neighbour-

ing pairs of points.

Figure 35 shows simulated realisations of the Strauss process with two values
of the interaction parameter γ. The case γ = 0 was already illustrated in
Figure 34.

The intensity function of the Strauss process is, applying equation (34),

β(u) = E[β∗(u,X)]
= E[βγt(u,X)] ≤ β

It is not easy to evaluate β(u) explicitly as a function of β, γ, r.
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Fig. 35. Realisations of the Strauss process with interaction parameter γ = 0.2
(Left) and γ = 0.5 (Right) in the unit square, both having activity β = 200 and
interaction range r = 0.07.

4.7 Parameter Estimation

Finally we return to the question of fitting a parametric model to point pattern
data. Suppose we have observed a point pattern x in a bounded window
W ⊂ R2, and wish to model it as a realisation of a finite point process X with
probability density f(x; θ) where θ is the parameter. The likelihood is

L(θ) = f(x; θ).

Define the maximum likelihood estimator

θ̂ = argmaxθL(θ).

Example 4.12 (Uniform Poisson process). Suppose the model X is a uniform
Poisson process in W with intensity β. The probability density of this model
was found in Example 4.6 to be

f(x;β) = βn(x) exp((1− β)λ2(W )).

Thus the log likelihood is

L(β) = n(x) log β + (1− β)λ2(W )

so the score is
U(β) =

d
dβ

log L(β) =
n(x)
β

− λ2(W )

so the maximum likelihood estimate of β is
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β̂ =
n(x)
λ2(W )

,

the same as the method-of-moments estimator.

Example 4.13 (Hard core process). The probability density for a hard core
process was found in Example 4.7 to be

f(x; r) =
1{x ∈ Hr}
P(Π ∈ Hr)

where Hr is the set of all point patterns x with the property that every pair
of distinct points in x is at least r units apart. Again Π denotes the uniform
Poisson process with intensity 1.

For any configuration x let m(x) = min {||xi − xj || : xi, xj ∈ x} be the
minimum distance between any pair of distinct points in x. Then Hr =
{x : m(x) ≥ r}. Thus the likelihood can be written

L(r) = f(x; r) =
1{m(x) ≥ r}
P(m(Π) ≥ r)

.

The numerator is equal to 1 for all r ≤ m(x) and to 0 for r > m(x). The
denominator is clearly a decreasing (or at least non-increasing) function of r.
Thus, L(r) is a non-decreasing function of r on the range 0 ≤ r ≤ m(x), and
is zero for r > m(x). It follows that the maximum likelihood estimate of r is

r̂ = m(x).

For more complicated models, we rapidly run into problems in applying the
method of maximum likelihood. The likelihood of a cluster process is known
analytically [9], but is difficult to maximise. The likelihood of many Gibbs
models contains a normalising constant, which is usually an intractable func-
tion of θ. Hence, analytic maximisation of L is often difficult [33].

Instead, some form of approximation is often employed as a substitute
for exact maximum likelihood estimation. One strategy is to approximate the
likelihood itself, for example using a series expansion (such as virial expan-
sion), or using simulation (Monte Carlo maximum likelihood [21, 33]).
Monte Carlo methods are probably the most popular approach, although they
have many technical difficulties and are highly computationally-intensive.

Some experts also claim to be able to ‘fit by eye’ [40].

4.8 Estimating Equations

Another strategy for parameter estimation is to replace the maximum likeli-
hood estimating equations

U(θ) =
d
dθ

log L(θ) = 0 (49)
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by another system of equations.
Let Ψ(θ,X) be a function such that, for any θ,

Eθ[Ψ(θ,X)] = 0 (50)

where Eθ denotes the expectation over the distribution of X when θ is the
true parameter value. When data x are observed, suppose we estimate θ by
the solution θ̂ of

Ψ(θ,x) = 0. (51)

Then (51) is called an unbiased estimating equation [22].
This concept embraces both maximum likelihood and the method of mo-

ments. A key result in the classical theory of maximum likelihood is that (49)
is an unbiased estimating equation. The method of moments is characterised
by the estimating equation (35), which can be rewritten in the form (51) where
Ψ(θ,x) = T (x)− Eθ[T (X)]. This is clearly an unbiased estimating equation.

The term ‘unbiased’ should not be misinterpreted as suggesting that θ̂ is
an unbiased estimator of θ. However under reasonable limiting conditions θ̂ is
consistent and asymptotically unbiased.

Another family of estimating equations for point process models was sug-
gested by Tákacs and Fiksel [20, 44, 45]. Consider again the identity (31). In
our context the conditional intensity of the point process X depends on the
parameter θ, so we denote the conditional intensity by β∗

θ (u,x), and equation
(31) becomes

E
∑

x∈X

g(x,X \ x) =
∫

Rd

E [β∗
θ (x,X)g(x,X)] dx

for arbitrary integrable functions g. It follows that if we define

Ψ(θ,x) =
∑

xi∈x∩A

g(xi,x \ {xi})−
∫

A
β∗
θ (u,x)g(u,x) du (52)

for any chosen function g and any A ⊆ W , then (50) holds, and we have an
unbiased estimating equation.

Example 4.14. To fit the Strauss process (Example 4.11) to a point pattern
dataset x, recall that the conditional intensity is β∗

θ (u,x) = βγt(u,x). Assume
r is fixed and known. Taking g ≡ 1 and A = W in (52) gives

Ψ(θ,x) = n(x)− β
∫

W
γt(u,x) du.

Taking g(u,x) = t(u,x) gives

Ψ(θ,x) =
n(x)∑

i=1

t(xi,x \ {xi})− β
∫

W
t(u,x)γt(u,x) du

= 2s(x)− β
∫

W
t(u,x)γt(u,x) du
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where s(x) is the number of unordered pairs of points in x which are closer
than a distance r apart. Equating these two functions Ψ to zero gives us two
equations in the two unknowns β and γ which can be solved numerically
to give estimates β̂, γ̂. To simplify these expressions, notice that t(u,x) has
integer values, and let

mk =
∫

W
1{t(u,x) = k} du

for each k = 0, 1, 2, . . .. Then the equations to be solved are

n(x) = β
∞∑

k=0

γkmk

2s(x) = β
∞∑

k=0

kγkmk.

4.9 Likelihood Devices

Another approach is to replace the likelihood function by another function
altogether. An example is the pseudolikelihood proposed by Besag [10, 11].

Definition 4.3. For a point process X with conditional intensity β∗
θ (u,x),

where θ is the unknown parameter, define the pseudolikelihood

PL(θ,x) =

(
∏

xi∈x

β∗
θ (xi,x)

)
exp

[
−
∫

W
β∗
θ (u,x) du

]
. (53)

The maximum pseudolikelihood estimator (MPLE) of θ is the value
maximising PL(θ).

A rationale for using this function is offered in [10, 12]. If x is treated as fixed,
and the pseudolikelihood is considered as a function of θ, then the pseudolike-
lihood has the same functional form as the likelihood of an inhomogeneous
Poisson process. The pseudolikelihood for a Poisson process is identical to its
likelihood, up to a constant factor. Thus, the pseudolikelihood may be re-
garded as an approximation to the likelihood which ignores the dependence
between points. It may be expected to be a good approximation to the likeli-
hood when interpoint dependence is weak.

Example 4.15. For the Strauss process the log pseudolikelihood is

log PL(β, γ, r) =
n(x)∑

i=1

(log β + t(xi,x \ {xi}) log γ)−
∫

W
βγt(u,x) du

= n(x) log β + 2s(x) log γ −
∫

W
βγt(u,x) du.
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The score components for β, γ are

∂

∂β
log PL =

n(x)
β

−
∫

W
γt(u,x) du

∂

∂γ
log PL =

2s(x)
γ

− β
∫

W
t(u,x)γt(u,x)−1 du.

The maximum pseudolikelihood estimators of β, γ are the roots of these two
functions.

Notice that the maximum pseudolikelihood estimating equations derived in
Example 4.15 are equivalent to those derived using the Takacs-Fiksel method
in Example 4.14. This is true in greater generality, as shown in [3, 17].

Powerful advantages of the pseudolikelihood are that it avoids the nor-
malising constant present in the likelihood, that it is usually easy to compute
and maximise, and that it retains good properties such as consistency and
asymptotic normality in a large-sample limit [25, 24]. A disadvantage of the
pseudolikelihood is that it is known to be biased and statistically inefficient
in small samples.

An algorithm for fitting very general point process models by maximum
pseudolikelihood was developed in [6]. It is now possible to perform parametric
modelling and inference for spatial point processes using tools similar to those
available for other types of data. For further details, see [8, 7].
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